\(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+.....+\frac{1}{98.102}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

28 tháng 2 2021

ta có

S=1+ 1/2 +1/2^2 +..+1/2^100

=> S/2 -S=1/2+ 1/2^2+...+1/2^101-1-1/2-...1/2^100

=> -S/2=1/2^101-1

=> -S/2=(1-2^101)/2^101

=> S=-2*(1-2^101)/2^101

=> S=(2^101-1)/2^100

26 tháng 7 2019

\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{100}-1\right)\)

\(-A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{100}\right)\)

\(-A=\frac{9}{10}\cdot\frac{10}{11}\cdot\frac{11}{12}\cdot...\cdot\frac{99}{100}\)

\(-a=\frac{9}{100}\)

\(A=-\frac{9}{100}\)

26 tháng 7 2019

Bài 1.

Ta có: \(\frac{a}{b}+\frac{-a}{b+1}=\frac{a}{b}-\frac{a}{b+1}=a\left(\frac{1}{b}-\frac{1}{b+1}\right)=a\left(\frac{b+1-b}{b\left(b+1\right)}\right)=a\left(\frac{1}{b\left(b+1\right)}\right)=\frac{a}{b\left(b+1\right)}\)

=> A là đáp án đúng

Bài 2. Ta có:

B = 4x - 4y + 5xy

B= 4x - 4y + 4xy + xy

B = 4(x - y + xy) + xy

B = 4.(5/12 - 1/3) - 1/3

B = 4.1/12 - 1/3
B = 1/3 - 1/3 = 0

26 tháng 9 2019

\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)

\(=3+3.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=3+3.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=3+3.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\frac{99}{202}\)

\(=3+\frac{297}{404}\)

\(=\frac{1509}{404}\)

26 tháng 9 2019

chỗ 3+3/2(1/6+..)

bn nhìn nhầm rồi

đáng lẽ: 3+(1/6+,.....) chứ nâk

24 tháng 12 2017

ta có 3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)