\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}-\frac{1}{6}+\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}\)

\(A=\frac{6}{25}\)

21 tháng 5 2016

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}\)

\(A=\frac{6}{25}\)

12 tháng 5 2018

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)

\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}\)

\(A=\frac{6}{25}\)

12 tháng 5 2018

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}\\ =\frac{24}{100}=\frac{6}{25}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}\)

\(=\frac{24}{100}=\frac{6}{25}\)

2 tháng 5 2019

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)

\(\Rightarrow A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{100}\)

\(\Rightarrow A=\frac{25}{100}-\frac{1}{100}\)

\(\Rightarrow A=\frac{24}{100}\)

\(\Rightarrow A=\frac{6}{25}\)

10 tháng 5 2016

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

Vậy A=6/25

10 tháng 5 2016

\(A=\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+.....+\frac{1}{99\times100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}\)

\(A=\frac{24}{100}=\frac{6}{25}\)

21 tháng 3 2020

\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)

\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{4}-\frac{1}{100}=\frac{25}{100}-\frac{1}{100}=\frac{24}{100}=\frac{6}{25}\)

16 tháng 4 2018

Bài 1:

a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) ta có: \(A=1+2+2^2+2^3+...+2^{2018}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2019}\)

\(\Rightarrow2A-A=2^{2019}-2\)

\(\Rightarrow A=2^{2019}-2\)

Chúc bn học tốt !!!!!

16 tháng 4 2018

a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

19 tháng 4 2019

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

19 tháng 4 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

3 tháng 5 2020

A=1/(4X5)+1/(5X6)+1/(6X7)+1/(7X8)+.....+1/(999X10)

A=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+......+1/999+1/9990-1/10

A=1/4-1/99.9X1/100

A=1/4-1/10

A=6/40

10 tháng 4 2019

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}=\frac{10}{11}\)

10 tháng 4 2019

Đặt\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}...+\frac{1}{110}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{10.11}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)

\(S=1-\frac{1}{11}\)

\(S=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)