Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+\frac{8n^2-1}{\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{1+\frac{8n^2-1}{\left(4n^2-1\right)^2}}=\sqrt{\frac{\left(4n^2-1\right)^2+8n^2-1}{\left(4n^2-1\right)^2}}\)
\(=\sqrt{\frac{16n^4-8n^2+1+8n^2-1}{\left(4n^2-1\right)^2}}=\frac{4n^2}{4n^2-1}=1+\frac{1}{4n^2-1}=1+\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)
\(\Rightarrow S=1009+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=1009+\frac{1}{2}\left(1-\frac{1}{2019}\right)=...\)
Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:
a) Ta có
\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)
\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)
\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)
\(=\sqrt{2017}-1\)
\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)
b) Ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự ta có
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......................
\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
Suy ra
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5 + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013} + \sqrt {2017} }}\\
= \frac{{(\sqrt 5 + 1)(\sqrt 5 - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017} + \sqrt {2013} )(\sqrt {2017} - \sqrt {2013} )}}{{\sqrt {2013} + \sqrt {2017} }}\\
= \sqrt 5 - 1 + \sqrt 9 - \sqrt 5 + ... + \sqrt {2017} - \sqrt {2013} \\
= 1 + \sqrt 5 - \sqrt 5 + \sqrt 9 - \sqrt 9 + ... + \sqrt {2013} - \sqrt {2013} + \sqrt {2017} \\
= 1 + \sqrt {2017} \\
\Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]
Với mọi \(n\in N.\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó
\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)
\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)
\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)
\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)
\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)
\(S=\frac{\left(2019-1\right)}{2}=1009\)
\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)
\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)
\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)
\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)
\(Tongquat:\)
\(\sqrt{1+\frac{1}{n}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n}+\frac{2}{n}-\frac{2}{n+1}-\frac{2}{n\left(n+1\right)}+\frac{1}{\left(n+1\right)^2}}\)
\(=\sqrt{\left(1+\frac{1}{n}\right)^2-2\left(1+\frac{1}{n}\right)\frac{1}{n+1}+\frac{1}{n+1}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}\)
\(=|1+\frac{1}{n}-\frac{1}{n+1}|=1+\frac{1}{n}-\frac{1}{n+1}\)
Thay vào ta có:
\(P=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.........-\frac{1}{2017}\)
\(P=2015+\frac{1}{2}-\frac{1}{2017}=2015+\frac{2015}{4034}\)