Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1^2+2^2+3^2+...+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+n\left[\left(n+1\right)-1\right]\)
\(=\left[1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
\(=n\left(n+1\right)\left(n+2\right)-\frac{n\left(n+1\right)}{2}\)
\(=\left[n\left(n+1\right)\right]\left[\left(n+2\right)-\frac{1}{2}\right]\)
\(=n\left(n+1\right)\left(n+1,5\right)\)
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
Bài 1
a/
\(A=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+10\left(11-1\right)=\)
\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)=\)
Đặt \(B=1.2+2.3+3.4+...+10.11\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+10.11.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-9.10.11+10.11.12=\)
\(=10.11.12\Rightarrow B=\frac{10.11.12}{3}=4.10.11\)
\(\Rightarrow A=B-\left(1+2+3+...+10\right)=4.10.11+\frac{10.\left(1+10\right)}{2}=\)
\(=4.10.11+5.11=11.\left(4.10+5\right)=11.45=495\)
b/
\(B=5^2\left(1+2^2+3^2+...+10^2\right)=25.495=12375\)
Bài 2
Số số hạng của M \(=\frac{2n-1-1}{2}+1=n\)
\(M=\frac{n\left[1+\left(2n-1\right)\right]}{2}=n^2\)là số chính phương