\(S=\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:2 tử(1+2+22+...+22008).2+

=2+22+23+...+22008+22009

2 tử - tử= tử

2+22+2^3+...+2^2008+2^2009-1+2+2^2+...+2^2008=2^2009-1

tử = 2^2009-1 mẫu = 1-2^2009 vậy s=-1

 

 

28 tháng 3 2018

hình như không đúng

17 tháng 4 2016

đặt tử =A,ta có:

tử=2A=2(1+2.2+2.22+...+2.22008)

=2.1+2.2+2.22+...+2.22008

=2+22+23+...+22009

2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)

A=22009-1

thay A vào tử của S ta được:\(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

5 tháng 5 2015

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)

\(2A=2+2^2+2^3+...+2^{2009}\)\(2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\)

\(A=2^{2009}-1\)

\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)

\(S=\frac{2^{2009}-1}{-\left(-1+2^{2009}\right)}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

18 tháng 5 2015

Cho A = 1 + 2 + 22 + 23 + ... + 22008

->  2A = 2 + 22 + 23 + 24 +...+ 22009 

-> 2A - A = (  2 + 22 + 23 + 24 +...+ 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )

->       A = \(2^{2009}-1=-\left(1-2^{2009}\right)\)

S =  \(\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)=-1