K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

2A = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

A = \(2-\frac{1}{2^{2016}}\)

15 tháng 2 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16 

2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

A=\(\frac{1}{2017}-\frac{1}{2}\)

15 tháng 2 2017

A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

A = \(1-\frac{1}{2^{2016}}\)

11 tháng 2 2018

        \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)

7 tháng 5 2017

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)

\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2035153}\)

\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{4070306}\)

\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2017.2018}\)

\(S=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{2018}\right)=2.\frac{504}{1009}=\frac{1008}{1009}\)

Vậy \(S=\frac{1008}{1009}\)

7 tháng 5 2017

\(S=\frac{1008}{1009}\)

4 tháng 5 2017

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

          \(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)

          \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

    \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

          \(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)

         \(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Vậy   \(A=\frac{2^{2018}-1}{2^{2017}}\)

4 tháng 5 2017

A=đã cho.

2A=1+1/2+1/2^2+1/2^3+...+1/2^2016.

2A-A=1-1/2^2017(khử).

A=1-1/2^2017.

14 tháng 2 2018

           \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Leftrightarrow\)\(A=1-\frac{1}{2^{2016}}\)

14 tháng 2 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)

\(2A=1+\frac{1}{2}+.........+\frac{1}{2^{2015}}\)

\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2016}}\right)\)

\(A=1-\frac{1}{2^{2016}}\)

24 tháng 3 2017

A=1/2+1/2^2+1/2^3+...+1/2^2016     (1)

2A=1+1/2+1/2^2+...+1/2^2015         (2)

Lấy (2)-(1) được:

A=1+1/2+1/2^2+...+1/2^2015-(1/2+1/2^2+1/2^3+...+1/2^2016)

A=1+1/2+1/2^2+...+1/2^2015-1/2-1/2^2-1/2^3-...-1/2^2016

A=1-1/2^2016

Vậy A=1-1/2^2016

3 tháng 5 2019

A = \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{2014.2016}\)

A = \(5.\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)

A = \(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)

A = \(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{2016}\right)\)

A = \(\frac{5}{2}.\frac{1007}{2016}=\frac{5035}{4032}\)

3 tháng 5 2019

\(A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{2014.2016}\)

\(\Rightarrow\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\)

\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2014}-\frac{1}{2016}\)

\(\Rightarrow\frac{2}{5}A=\frac{1}{2}-\frac{1}{2016}\)

\(\Rightarrow\frac{2}{5}A=\frac{1008}{2016}-\frac{1}{2016}\)

\(\Rightarrow\frac{2}{5}A=\frac{1007}{2016}\)

\(\Rightarrow A=\frac{1007}{2016}\div\frac{2}{5}\)

\(\Rightarrow A=\frac{1007}{2016}\times\frac{5}{2}\)

\(\Rightarrow A=\frac{5035}{4032}\)

14 tháng 2 2020

\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)

\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)

14 tháng 2 2020

\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)

\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)