![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)
\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)
\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)
\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)
\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)
\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)
\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3A = 3^2 - 3^3 + 3^4 - 3^5 + ... -3^2015
3A + A = 3^2 - 3^3 + 3^4 - 3^5 + ... - 3^2015 + 3 - 3^2 + 3^3 - ... - 3^2004
4A = 3 - 3^2015
=>A \(\frac{3-3^{2015}}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a_{n-1}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}+\frac{2}{n+1}\)
\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+.......+\frac{2}{2014}-\frac{2}{2015}=1-\frac{2}{2015}=\frac{2013}{2015}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng công thức:
1 + 23 + 33 + ... + n3 = (1 + 2 + 3 + ... + n)2 ta có
A = 1 + 23 + 33 + ... + 20153 = (1 + 2 + 3 + ... + 2015)2
A = [(2015+1).2015:2]2
A = ( \(\dfrac{2016.2015}{2}\))2
A = (1008. 2015)2
A = 20311202
\(S=3+3^2+3^3+3^4+...+3^{2014}\)
\(3S=3^2+3^3+3^4+3^5+...+3^{2015}\)
\(3S-S=3^2+3^3+3^4+3^5+...+3^{2015}-3-3^2-3^3-3^4-...-3^{2014}\)
\(2S=3^{2015}-3\)
\(S=\frac{2^{2015}-3}{2}\)