Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/5 + 1/5² + 1/5³ + ... + 1/5¹⁰⁰
⇒ 5S = 1 + 1/5 + 1/5² + ... + 1/5⁹⁹
⇒ 4S = 5S - S
= (1 + 1/5 + 1/5² + ... + 1/5⁹⁹) - (1/5 + 1/5² + 1/5³ + ... + 1/5¹⁰⁰)
= 1 - 1/5¹⁰⁰
⇒ S = (1 - 1/5¹⁰⁰)/4
MS = 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100
= (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)
= (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1/2 + 1/2 + 1/4 + 1/4 + 1/6 + 1/6 ....... 1/100 + 1/100) = (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2 + 1/3 + ....... 1/50 ) = 1/51 + 1/52 + 1/53 + ............. + 1/100
Vậy TS/MS = 1
số số hạng =(số cuối-số đầu) : khoảng cách +1
tổng =(số cuối+số đầu)x số số hạng :2
bn cứ áp dụng thế mà làm
nhớ tick
S= 1 - 2 + 3 - 4 + .... + 999 - 1000
S = (1 - 2 ) + (3 - 4) + ..... + (999 - 1000)
S = -1 + (-1) + (-1) + ..... + (-1)
= -1 x 500 = -500
S = 1.2 + 2.3 + 3.4 +...+99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
P = 1 + 3 + 5 + 7 +...+ 2015
P = (2015 + 1)1008 : 2
P = 1016064
T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100
T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)
T = (-4) + (-4) +...+ (-4)
T = (-4)25
T = -100
\(\text{S=1 - 2 + 3 - 4 + 5 - 6 + ...+ 97 - 98 + 99 -100.}\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+......+\left(97-98\right)+\left(99-100\right)\)(50 cặp )
\(S=-1.50\)
\(S=-50\)
Vậy S= -50
Hok tốt !
\(S=1-2+3-4+5-6+...+97-98+99-100\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(97-98\right)+\left(99-100\right)\)
\(S=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)+\left(-1\right)\)
\(S=\left(-1\right)\cdot50\)
\(S=-50\)
S = \(\dfrac{1}{5}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{5^3}\)+...+\(\dfrac{1}{5^{99}}\)+ \(\dfrac{1}{5^{100}}\)
5S = 1 + \(\dfrac{1}{5}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{5^3}\)+...+ \(\dfrac{1}{5^{99}}\)
5S - S = 1 - \(\dfrac{1}{5^{100}}\)
4S = \(\dfrac{5^{100}-1}{4.5^{100}}\)