K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

\(\frac{2^2}{1.3}+\frac{2^2}{3.5}+\frac{2^2}{5.7}+...+\frac{2^2}{99.101}\)

=2.\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

=2.\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\right)\)

=2.\(\left(1-\frac{1}{100}\right)\)

=2.\(\left(\frac{100}{100}-\frac{1}{100}\right)\)

=2.\(\frac{99}{100}\)

=\(\frac{99}{50}\)

31 tháng 7 2015

hỏi gì nhiều thế

 

21 tháng 10 2018

\(S_n=1.1!+2.2!+3.3!+...+n.n!\)

\(\text{Ta có:}\) \(1.1!=2!-1!\)

\(2.2!=3!-2!\)

\(3.3!=4!-3!\)

.......

\(n.n!=\left(n+1\right)!-n!\)

Cộng vế với vế ta đc: 

\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)

\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)

21 tháng 10 2018

thank bn

13 tháng 11 2016

tham the 

14 tháng 11 2016

có giỏi thì làm một câu xem nào