\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\ti...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{1999}{1000}\)

23 tháng 1 2017

1,999 nhé bạn!

5 tháng 3 2016

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.................-\frac{1}{100}+1=1-\frac{1}{100}+1=2-\frac{1}{100}=\frac{199}{100}\)

17 tháng 10 2024

Đề bài có vẻ bất ổn em ơi?

30 tháng 7 2024

1x2/1+2 + ... + 1x2x ... x 999x1000/1+2+ ... +1000

= 1 + ... + 1

= 1 x 1000

= 1000

24 tháng 3 2018

Suy ra 2A=2/1x2x3+2/2x3x4+2/3x4x5+......+2/38x39x40

        2A=3-1/1x2x3+4-2/2x3x4+5-3/3x4x5+........+40-38/38x39x40

       2A=1/1x2-1/2x3+1/2x3-1/3x4+1/4x5-1/5x6+........+1/38x39-1/39x40

      2A=1/2-1/1560

      2A=780/1560-1/1560

      2A=779/1560

     A=779/1560:2

     A=779/1560x1/2

   A=779/3120

24 tháng 3 2018

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{38.39.40}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.........+\frac{2}{38.39.40}\)

\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{40-38}{38.39.40}\)

\(2A=\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+.......+\frac{40}{38.39.40}-\frac{38}{38.39.40}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{38.39}-\frac{1}{39.40}\)

\(2A=\frac{1}{1.2}-\frac{1}{39.40}\)

\(2A=\frac{1}{2}-\frac{1}{1560}\)

\(2A=\frac{779}{1560}\)

\(A=\frac{779}{1560}:2\)

\(A=\frac{779}{3120}\)

30 tháng 1 2016

=1/2 -1/3 +1/3-1/4+1/4-1/5+....+1/999-1/1000

=1/2-1/1000

=499/1000

30 tháng 1 2016

=1/2-1/3+1/3-1/4+1/4-1/5+...+1/999-1/1000

=1/2-1/1000=499/1000

nha

9 tháng 11 2014

\(\frac{1}{8}=12,5\%\)  ;  \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\) 

Thay vào trên mà tính.

\(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)  

16 tháng 8 2017

Ta có:

\(D=1.2+2.3+3.4+4.5+...+99.100\)

\(\Leftrightarrow3D=1.2.\left(3-0\right)+2.3+\left(4-1\right)+3.4+\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)

\(\Leftrightarrow3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100\)

\(\Leftrightarrow3D=99.100.101\Leftrightarrow D=\frac{99.100.101}{3}=333300\)

\(B=1.3+2.4+3.5+4.6+...+99.101\)

\(\Leftrightarrow B=\left(1.3+3.5+...+99.101\right)+\left(2.4+4.6+...+98.100\right)\)

\(\Leftrightarrow6B=\left(1.3.\left(5-\left(-1\right)\right)+3.5.\left(7-1\right)+...+99.101.\left(103-97\right)\right)+\left(2.4.\left(6-0\right)+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\right)\)

\(\Leftrightarrow B=\frac{99.101.103+3}{6}+\frac{98.100.102}{6}=338250\)

Vì các bước gần tương tự như bài a) nên mình bỏ bước.

16 tháng 8 2017

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)

\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)

\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)

23 tháng 6 2017

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

23 tháng 6 2017

cảm ơn bn nhìu ^_^