Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)
\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)
\(=3^2-\left(120-2\cdot89\right)\)
\(=9--58=9+58=67\)
1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)
\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)
\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)
\(=9-\left[120-89\cdot2\right]\)
\(=9-\left[120-178\right]=9-(-58)=67\)
b, Tương tự như bài a
2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)
\(\Leftrightarrow4^x\cdot5+32=56+56\)
\(\Leftrightarrow4^x\cdot5+32=112\)
\(\Leftrightarrow4^x\cdot5=80\)
\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,24:(2x-1)^3-2=1\)
\(\Leftrightarrow24:(2x-1)^3=3\)
\(\Leftrightarrow(2x-1)^3=8\)
\(\Leftrightarrow(2x-1)^3=2^3\)
\(\Leftrightarrow2x-1=2\)
Làm nốt là xong thôi
\(D=4+4^2+4^3+4^4+...+4^{200}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{199}+4^{200}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{199}.\left(1+4\right)\)
\(=\left(1+4\right).\left(4+4^3+...+4^{199}\right)\)
\(=5.\left(4+4^3+...+4^{199}\right)⋮5\)
Lần sau ghi đề hẳn hoi đừng đùa
a, 23+4+5+6+7+8+9+10 =252
b,32+3+4+5 =314
c,42+3+4 =49
d,52+3+4 =59
e,62+3+4 =69
nhớ tich đúng nhé
Tính giá trị các lũy thừa sau
a)23,24 ,25, 26 ,27 ,28,29,210 = 252
b)32,33,34,35 = 314
c)42,43,44 = 49
d)52,53,54 =59
e)62,63,64 =69
a ) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b ) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)
\(\Rightarrow2B=3^{2011}-1\)
\(\Rightarrow B=\frac{3^{2011}-1}{2}\)
Chúc bạn học tốt !!!
D = \(\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
D = \(4.\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)\)
Đặt C = \(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\)
5C = \(1+\frac{1}{5}-\frac{1}{5^2}+...+\frac{1}{5^{199}}\)
6C = 5C + C = \(1+\frac{1}{5}+\frac{1}{5}+\frac{1}{5^{200}}\)
=> C = \(\frac{\frac{7}{5}+\frac{1}{5^{200}}}{6}\)
=> D = \(4.\left(\frac{\frac{7}{5}+\frac{1}{5^{200}}}{6}\right)\)
=> D = \(\frac{\frac{14}{5}+\frac{2}{5^{200}}}{3}\)