Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu dễ tự làm nha:
\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)
\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
\(3A-A=1-\dfrac{1}{3^{2018}}\)
\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)
\(b,B=1+5+5^2+5^3+...+5^{100}\)
\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=1-5^{101}\)
\(B=\dfrac{\left(1-5^{101}\right)}{4}\)
Dấu " / " là phân số nhé
a) 5/-4 . 16/25 + -5/4 . 9/25
= -5/4 . 16/25 + -5/4 . 9/25
= -5/4 . ( 16/25 + 9/25 )
= -5/4 . 1
= -5/4
b) 4 11/23 - 9/14 + 2 12/23 - 5/4
= 103/23 - 9/14 + 58/23 - 5/4
= 103/23 + 58/23 - 9/14 - 5/4
= 7 - 9/14 - 5/4
= 143/28
c) 2 13/27 - 7/15 + 3 14/27 - 8/15
= 67/27 - 7/15 + 95/27 - 8/15
= 67/27 + 95/27 - 7/15 - 8/15
= 6 - 7/15 - 8/15
= 5
a)
\(A=\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+...+\dfrac{2}{52.53}\\ A=2\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{53.54}\right)\\ A=2.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{52}-\dfrac{1}{53}\right)\\ A=2\left(\dfrac{1}{3}-\dfrac{1}{53}\right)\\ A=\dfrac{100}{3.53}=\dfrac{100}{159}\)
b)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{2652}\\ B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{51.52}\\ B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{51}-\dfrac{1}{52}\\ B=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{50}{104}=\dfrac{25}{52}\)
câu c tương tự câu a
Đăng ít thôi.
d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)
\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)
\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)
\(\Rightarrow2D=\dfrac{22}{45}\)
\(\Rightarrow D=\dfrac{11}{45}\)
\(.2.\)
\(a.\)
\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)
\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)
Vậy : \(x=-\dfrac{13}{12}\)
\(b.\)
\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)
\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)
Vậy : \(x=-\dfrac{16}{21}\)
\(c.\)
\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)
\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)
Vậy : \(x=-\dfrac{22}{15}\)
\(d.\)
\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)
\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)
Vậy : \(x=\dfrac{1}{6}\)
a, \(\dfrac{-7}{9}.2\dfrac{3}{4}\)
= \(\dfrac{-7}{9}.\dfrac{11}{4}\)
= \(\dfrac{-77}{36}\)
b, \(\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{-2}{5}\)
= \(\dfrac{2}{3}+\dfrac{-2}{15}\)
= \(\dfrac{10}{15}+\dfrac{-2}{15}\)
= \(\dfrac{-8}{15}\)
c , \(\dfrac{2}{3}-4\left(\dfrac{1}{2}+\dfrac{3}{4}\right)\)
= \(\dfrac{2}{3}-4.\dfrac{5}{4}\)
= \(\dfrac{2}{3}-5\)
= \(\dfrac{-13}{3}\)
d, \(\left(\dfrac{1}{-3}+\dfrac{5}{6}\right).11-7\)
= \(\dfrac{1}{2}\) . 11 - 7
= \(\dfrac{11}{2}-\dfrac{14}{2}\)
= \(\dfrac{-3}{2}\)
e, \(\dfrac{3}{4}.15\dfrac{1}{3}-\dfrac{3}{4}.43\dfrac{1}{3}\)
= \(\dfrac{3}{4}.\left(15\dfrac{1}{3}-43\dfrac{1}{3}\right)\)
= \(\dfrac{3}{4}.-28\)
= \(-21\)
3) \(\left(x+\dfrac{1}{5}\right)^2\) + \(\dfrac{17}{25}\) = \(\dfrac{26}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{26}{25}\) - \(\dfrac{17}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{9}{25}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\dfrac{3}{5}.\dfrac{3}{5}\)
=> \(\left(x+\dfrac{1}{5}\right)^2\) = \(\left(\dfrac{3}{5}\right)^2\)
=> \(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)
=> \(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)
=> \(x\) = \(\dfrac{2}{5}\)
4) -1\(\dfrac{5}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-24}{27}\)
=> \(\dfrac{-32}{27}\) - \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-32}{27}\) - \(\dfrac{-8}{9}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-8}{27}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\) . \(\dfrac{-2}{3}\)
=> \(\left(3x-\dfrac{7}{9}\right)^3\) = \(\left(\dfrac{-2}{3}\right)^3\)
=> \(3x-\dfrac{7}{9}=\dfrac{-2}{3}\)
=> \(3x=\dfrac{-2}{3}+\dfrac{7}{9}\)
=> \(3x=\dfrac{1}{9}\)
=> \(x=\dfrac{1}{9}:3\)
=> \(x=\dfrac{1}{27}\)
D = 3/(100.99) + 3/(99.98) + ... + 3/(7.6)
= 3[1/(100.99) + 1/(99.98) + ... + 1/(7.6)]
= 3(1/99 - 1/100 + 1/98 - 1/99 + ... + 1/6 - 1/7)
= 3.(1/6 - 1/100)
= 3 . 47/300
= 47/100
D = \(\dfrac{3}{100.99}\) + \(\dfrac{3}{99.98}\) ... + \(\dfrac{3}{7.6}\)
D = \(\dfrac{3}{6.7}\) + ... + \(\dfrac{3}{98.99}\) + \(\dfrac{3}{99.100}\)
D = \(3.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{99.100}\right)\)
D = 3.(\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\))
D = 3.(\(\dfrac{1}{6}\) - \(\dfrac{1}{100}\))
D = 3. \(\dfrac{47}{300}\)
D = \(\dfrac{47}{100}\)