Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(+) Nếu -2x+4>=0 <=> -2x >= -4<=> x<= -2 thì |-2x+4| = -2x+4:
Ta có pt: -2x+4-2(x+1)=-5x+1 <=> -2x+4-2x-2+5x-1=0 <=> x+1=0 <=> x=-1 (Ko thỏa mãn đk)
(+) Nếu -2x+4<0 <=> -2x<-4 <=> x>-2 thì |-2x+4|=-(-2x+4)=2x-4:
Ta có pt: 2x-4-2(x+1)=-5x+1 <=> 2x-4-2x-2+5x-1 =0 <=> 5x-7=0 <=> x= 7/5 (Thỏa mãn đk)
Vay tap nghiem cua pt la S={7/5}
Bài làm:
a) \(4x\left(x+2\right)=4x^2-24\)
\(\Leftrightarrow4x^2+8x=4x^2-24\)
\(\Leftrightarrow8x=-24\)
\(\Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình \(S=\left\{-3\right\}\)
b) \(\frac{x-2}{3}< \frac{8x-5}{9}\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{9}< \frac{8x-5}{9}\)
\(\Leftrightarrow3x-6< 8x-5\)
\(\Leftrightarrow-5x< 1\)
\(\Leftrightarrow x>-\frac{1}{5}\)
Vậy \(x>-\frac{1}{5}\)
c) đkxđ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
Ta có: \(\frac{3}{x-2}+\frac{2}{x+2}=\frac{2x+5}{x^2-4}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+5}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow3\left(x+2\right)+2\left(x-2\right)=2x+5\)
\(\Leftrightarrow3x+6+2x-4=2x+5\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy tập nghiệm của phương trình \(S=\left\{1\right\}\)
Học tốt!!!!
b1) A=11-10x-x2=-x2-10x-25+36=-(x2+10x+25)+36=-(x+5)2+36 \(\le\)36
Dấu "=" xảy ra khi x=-5
Vậy GTLN của A là 36 tại x=-5
b2) B=|x-4|(2-|x-4|)=-(|x-4|)2+2|x-4|
=-(|x-4|)2+2|x-4|-1+1
=-[(|x-4|)2-2|x-4|+1]+1
=-(|x-4|-1)2+1\(\le\)1
Dấu "=" xảy ra khi |x-4|=1 <=>x=3 hoặc x=5
Vậy GTLN của B là 1 tại x=3 hoặc x=5
Lời giải:
Đặt $|x+4|=a(a\geq 0)$ thì pt trở thành:
$a^2-10a=24$
$\Leftrightarrow a^2-10a-24=0$
$\Leftrightarrow (a+2)(a-12)=0$
$\Leftrightarrow a=-2$ (loại) hoặc $a=12$ (chọn)
$\Leftrightarrow |x+4|=12$
$\Leftrightarrow x+4=\pm 12$
$\Leftrightarrow x=8$ hoặc $x=-16$
Tổng các nghiệm: $8+(-16)=-8$