\(\left(2x^4-3x^3-7x+12\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Tổng các hệ số sau khi thu gọn chính là giá trị đa thức trên khi x=1

18 tháng 3 2016

là 0 tớ dậy cậu bí quyết thầy giáo bảo tớ là đối với tổng hệ số thì để x=1

15 tháng 5 2017

a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến

f(x)=x2+2x37x596x7+x3+x2+x54x2+3x7

= -9 - 2x2 + 3x3 - 6x5 - 3x7

g(x)=x5+2x35x8x7+x3+4x25x7+x44x2x612

= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8

h(x)=x+4x55x6x7+4x3+x22x7+x64x27x7+x

= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7

b) Tính f(x) + g(x) h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)

= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7

= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

1 tháng 6 2015

\(M\left(x\right)=4x^3+x^2-7x+3x^2-x^3+9\)

=\(\left(4x^3-x^3\right)+\left(x^2+3x^2\right)-7x+9\)

=\(3x^3+4x^2-7x+9\)

\(N\left(x\right)=6+5x^3+6x^2+3x-2x^2-2x^3\)

=\(\left(5x^3-2x^3\right)+\left(6x^2-2x^2\right)+3x+6\)

=\(3x^3+4x^2+3x+6\)

1 tháng 6 2015

\(M\left(x\right)=3.x^3+4x^2-7x+9\)

\(N\left(x\right)=3.x^3+4.x^2+3x+6\)

7 tháng 5 2018

 ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(4x^3-7x^2+3x-12\right)+\left(-2x^3+2x^2+12+5x^2-9x\right)\)

                                 \(=\left(4x^3-2x^3\right)+\left(-7x^2+2x^2+5x^2\right)-\left(9x-3x\right)+\left(12-12\right)\)

                                  \(=-6x\)

Cho P(x) + Q(x) = 0

=> -6x = 0

x = 0

KL: x = 0 là nghiệm của P(x) + Q(x)

7 tháng 5 2018

Ta có :P(x)+Q(x)= 4x3-7x2+3x-12+(-2x3+2x2+12+5x2-9x)

=2x3-10x2-6x

Nghiệm của ĐT P(x)+Q(x) là giá trị thỏa mãn P(x)+Q(x)=0

<=> 2x3-10x2-6x=0

<=>2x(x2-5x-3)=0

<=>2x=0(*) hoặc x2-5x -3=0(**)

Từ (*) ta có : 2x=0 => x=0(1)

Từ (**) ta có : x2-5x-3=0 => x(x-5-3)=0

=>x=0 hoặc x-5-3=0 => x=0 hoặc x=8(2)

Từ (1) và (2) => x=0 và x=8 là nghiệm của P(x)+Q(x)

11 tháng 2 2019

Đề bài đúng phải là tìm tổng các hệ số sau khi khai triển chứ ko phải tổng các hạng tử

Tổng các hệ số sau khi khai triển của đa thức P(x) bằng giá trị của đa thức khi x = 1

Vậy tổng các hệ số của đa thức P(x) là: \(P\left(1\right)=\left(10.1^2-7.1-4\right)^{2012}=\left(-1\right)^{2012}=1\)

30 tháng 4 2016

Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1

Vậy tổng các hệ số của đa thức

f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016

 =f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1

30 tháng 4 2016

thanks