\(^1\) + 4^2+4^3+...+4^31

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

\(C=1+4^1+4^2+3^3+...+4^{31}\)

\(4C=4\left(1+4^1+4^2+4^3+...+4^{31}\right)\)

\(4C=4+4^2+4^3+4^4+...+4^{32}\)

\(4C-C=\left(4+4^2+4^3+4^4+...+4^{32}\right)-\left(1+4^1+4^2+4^3+...+4^{31}\right)\)

\(3C=4^{32}-1\)

\(C=\dfrac{4^{32}-1}{3}\)

4C = \(4+4^2+4^3+...+4^{31}\)

3C = \(4^{31}-1\)

\(C=\dfrac{4^{31}-1}{3}\)

 

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

a, \(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

b, \(4C=4^2+4^3+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(C=\frac{4^{n+1}-4}{3}\)

5 tháng 7 2019

a) A = 1 + 2 + 22 + ... + 22010

=> 2A = 2 + 22 + 23 + ... + 22011

Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)

              A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010

                 = 22011 - 1

b) C = 4 + 42 + 43 +... + 4n

=> 4C = 42 + 43 + 44 + ... + 4n + 1

Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)

            3C  = 4n + 1 - 4

              C  =(4n + 1 - 4) : 3

15 tháng 2 2020

a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)

\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)

\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)

\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)

b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)

c) Đặt \(C=1+2+3+...+30\)

Số số hạng là : \(\left(30-1\right):1+1=30\)(số)

Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)

Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)

1 tháng 5 2019

\(A=1+3+3^2+.....+3^{100}\)

\(3A=3+3^2+3^3+.....+3^{101}\)

\(3A-A=3+3^2+3^3+.....+3^{101}-\left(1+3+3^{^2}+....+3^{100}\right)\)

\(2A=3+3^2+3^3+....+3^{101}-1-3-3^2-.....-3^{100}\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

16 tháng 6 2018

\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)

\(S=2^{2018}-1\)

\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)

\(3S=3^2+3^3+3^4+...+3^{2018}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2018}-3\)

\(S=\frac{3^{2018}-3}{2}\)

\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)

\(4S=4^2+4^3+4^4+...+4^{2018}\)

\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)

\(3S=4^{2018}-4\)

\(S=\frac{4^{2018}-4}{3}\)

\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)

\(5S=5^2+5^3+5^4+...+5^{2018}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)

\(4S=5^{2018}-5\)

\(S=\frac{5^{2018}-5}{2}\)

Chúc em học tốt ~ 

16 tháng 6 2018

Tks anh ạ 

13 tháng 3 2018

a) \(\frac{1}{9}+3,25+5\frac{3}{16}+4\frac{1}{3}+2,8+0,5=\frac{1}{9}+\frac{13}{4}+\frac{83}{16}+\frac{13}{3}+\frac{14}{5}+\frac{1}{2}\)

\(=\frac{11651}{720}\)

B) \(2\frac{1}{3}+0,45+4,25+\frac{1}{81}+6\frac{8}{27}=\frac{7}{3}+\frac{9}{20}+\frac{17}{4}+\frac{1}{81}+\frac{170}{27}\)

\(=\frac{10807}{810}\)

C) \(1,25+2\frac{1}{4}+4\frac{2}{5}+0,3+2,14+4\frac{1}{8}=\frac{5}{4}+\frac{9}{4}+\frac{22}{5}+\frac{3}{10}+\frac{107}{50}+\frac{33}{8}\)

\(=\frac{2893}{200}\)

CHÚC BN HỌC TỐT!!!!!