K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16 

2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

A=\(\frac{1}{2017}-\frac{1}{2}\)

15 tháng 2 2017

A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

A = \(1-\frac{1}{2^{2016}}\)

15 tháng 4 2017

Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

2A = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

A = \(2-\frac{1}{2^{2016}}\)

26 tháng 1 2018

Có : 2A = 1 + 1/2 + 1/2^2 +.....+ 1/2^2015

A = 2A - A = (1+1/2+1/2^2+.....+1/2^2015)-(1/2+1/2^2+.....+1/2^2016)

   = 1 - 1/2^2016

Tk mk nha

26 tháng 1 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2015}}-\frac{1}{2^{2016}}\)

\(A=1-\frac{1}{2^{2016}}\)

viết lại đề cho rõ phân số đi bn

7 tháng 5 2017

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)

\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2035153}\)

\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{4070306}\)

\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2017.2018}\)

\(S=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{2018}\right)=2.\frac{504}{1009}=\frac{1008}{1009}\)

Vậy \(S=\frac{1008}{1009}\)

7 tháng 5 2017

\(S=\frac{1008}{1009}\)

10 tháng 5 2016

=1/2 - 1/3 +1/3 - 1/4 +...+1/2016 - 1/2017
=1/2 - 1/2017
=...

10 tháng 5 2016

1/2:3+1/3:4+1/4:5+...1/2016:2017

1/2.1/3+1/3.1/4+1/4.1/5+...1/2016.1/2017

1/2.3+1/3.4+1/4.5+...1/2016.2017

1/2-1/3+1/3-1/4+1/4-1/5+...1/2016-1/2017

=1/2-1/2017

=2017/4034-2/4034

=2015/4034