\(1^2+2^2+3^2+....+99^2+100^2\)

tính tổng C=\(101^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

3N = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)

3N = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100

3N = 99.100.101

3N=33.100.101=333300

b)

tổng này có  99-10+1=90 (số hạng):

10,11 + 11,12 + 12,13 +............+ 98,99 + 99,100 =

10,100 + 11,11 + 12,12 + .......... + 98,98 + 99,99 =

(10,10 + 99,99) x 90 : 2 = 4954,05

c)

R=1.(2-1)+2.(3-1)+.....+100.(101-1)

=1.2-1.1+2.3-1.2+......+100.101-1.100

=(1.2+2.3+.....+99.100+100.101)-(1+2+3+...+100)

=[1.2.3+2.3.(4-1)+........100.101.(102-99)]:3+[(100+1).100:2]

(tổng trên chia cho 3 nên cuối cùng chia 3)

=(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....100.101.102-99.100.101):3+5050

=(100.101.102) :3 +5050

=348450

d)=1.100+2.(100-1)+.....+100.(100-99)

=1.100+2.100-1.2+3.100-2.3+........+100.100-99.100

=100.(1+2+3+.......+100)-(1.2+2.3+3.4+....+99.100)

=100.\(\frac{101.100}{2}-\frac{99.100.101}{3}\) =505000-333300=171700

p/s mỏi tay, bấm mình nhé

 

12.jpg      
14 tháng 7 2017

\(\frac{1+\left[1+2\right]+\left[1+2+3\right]+...+\left[1+2+3+...+100\right]}{100.1+99.2+98.3+...+2.99+1.100}=\frac{1.2:2+2.3:2+3.4:2+...+100.101:2}{100.1+99.2+98.3+...+2.99+1.100}\)

\(=\frac{\frac{1}{2}\left[1.2+2.3+3.4+...+100.101\right]}{100.1+99.2+98.3+...+2.99+1.100}=\frac{\frac{1}{2}\cdot\frac{1}{3}\left[1.2.3-0.1.2+2.3.4-1.2.3+...+100.101.102-99.100.101\right]}{1.100+2.100-1.2+3.100-2.3+...+100.100-99.100}\)

\(=\frac{\frac{1}{6}\cdot100.101.102}{100\left[1+2+3+...+100\right]-\left[1.2+2.3+...+99.100\right]}=\frac{171700}{100\cdot\frac{100.101}{2}-\frac{99.100\cdot101}{3}}\)

\(=\frac{171700}{505000-333300}=\frac{171700}{171700}=1\)

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ

10 tháng 8 2015

\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+100\right)}{100.1+99.2+...+1.100}\)

\(\frac{1+1+2+1+2+3+...+1+2+...+100}{100.1+99.2+...+1.100}\)

\(=\frac{1.100+2.99+3.98+...+100.1}{100.1+99.2+...+1.100}\)

\(=1\)

25 tháng 1 2016

dễ quớ đi!

Ai ngu mới hỏi câu dễ thế

9 tháng 6 2017

Giải:

a, \(B=1^2+2^2+3^2+...+99^2+100^2.\)

\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right).\)

\(B=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100.\)

\(B=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right).\)

\(B=\dfrac{\left[1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\right]}{3}+\dfrac{100\left(100+1\right)}{2}.\)

\(B=\dfrac{\left(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\right)}{3}+5050.\)

\(B=\dfrac{100.101.102}{3}+5050.\)

\(B=343400+5050=348450.\)

Vậy \(B=348450.\)

\(C=...\) (làm tương tự con \(B\)).

9 tháng 6 2017

\(D=...\) (hình như đề sai).

\(T=1.100+2.99+3.98+...+99.2+100.1.\)

\(T=1.100+2.\left(100-1\right)+3.\left(100-2\right)+...+99\left(100-98\right)+100\left(100-99\right).\)

\(T=1.100+100.2+1.2+100.3+2.3+...+100.99+98.99+100.100+99.100.\)

\(T=100\left(1+2+3+...+100\right)-\left(1.2+2.3+3.4+...+99.100\right).\)

\(T=100.\dfrac{100.101}{2}-\dfrac{99.100.101}{3}.\)

\(T=100.5050-333300.\)

\(T=505000-333300=171700.\)

Vậy \(T=171700.\)

\(S=1.2.3+2.3.4+3.4.5+...+98.99.100.\)

\(4S=4\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right).\)

\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4.\)

\(4S=1.2.3\left(5-1\right)+2.3.4\left(6-2\right)+...+98.99.100\left(101-97\right).\)

\(4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100.\)

\(4S=\left(1.2.3.4-1.2.3.4\right)+\left(2.3.4.5-2.3.4.5\right)+...+\left(97.98.99.100-97.98.99.100\right)+98.99.100.101.\)

\(4S=0+0+...+0+98.99.100.101.\)

\(4S=98.99.100.101.\)

\(4S=97990200.\)

\(\Rightarrow S=\dfrac{97990200}{4}=24497550.\)

Vậy \(S=24497550.\)

~ Học tốt!!! ~