K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2015

B = 3-32+33-34+....+399-3100

3B = 32-33+34-35+....+3100-3101

4B = 3B + B = 3 - 3101

=> B = \(\frac{3-3^{101}}{4}\)

2 tháng 10 2016

Anou...Cho mình hỏi làm sao để ra 3 - 3^101 vậy bạn ..

12 tháng 4 2017

ta có: M = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +......+ 99/3^99 - 100/3^100

=> 3.M = 1 - 2/3 + 3/3^2 - 4/3^3 +.......+ 99/3^98 - 100/3^99

=> 3M + M = ( 1 - 2/3 + 3/3^2 - 4/3^3 +.........+ 99/3^98 - 100/3^99 ) + ( 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +....+ 99/3^99 - 100/3^100 )

=> 4.M = 1- 1/3 + 1/3^2 - 1/3^3 +........+ 1/3^98 - 1/3^99 - 100/3^100

=> 12.M = 3 - 1 + 1/3 - 1/3^2 +.......+ 1/3^97 - 1/3^98 - 1/3^99

=> 12M + 4M = ( 3 - 1 + 1/3 - 1/3^2 +......+ 1/3^97 - 1/3^98 - 1/3^99 ) + ( 1 - 1/3 + 1/3^2 - 1/3^3 +.......+ 1/3^99 - 1/3^100 )

=> 16M = 3 - 101/3^99 - 100/3^100

vù 16M < 3

=> M < 3/16

vậy M < 3/16

tk cho mk nha,mk bị âm rùi

27 tháng 3 2018

a)

\(\dfrac{7}{5}+\dfrac{5}{6}:5-\dfrac{3}{8}\cdot\left(-3\right)\\ =\dfrac{7}{5}+\dfrac{1}{6}+\dfrac{9}{8}\\ =\dfrac{168+20+135}{120}\\ =\dfrac{323}{120}\)

24 tháng 9 2017

quên, còn bài chứng minh!ahihi

Bài 2: 

ta có:

A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)

A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)

A=\(13+3^3.13+...+3^{1998}.13\)

A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)

suy ra A chia hết cho 13

24 tháng 9 2017

a) đặt A =\(1+2+2^2+...+2^{99}\)

ta có:

2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)

2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)

A=\(2^{100}-1-2^{99}\)

ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự! 

24 tháng 11 2017

a) \(A=2+2^2+2^3+2^4+.....+2^{98}+2^{99}\)

\(\Rightarrow2A=2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\right)-\left(2+2^2+2^3+2^4+.....+2^{98}+2^{99}\right)\)

\(\Rightarrow A=2^{100}-2\)

b) \(B=2+2^4+2^7+......+2^{97}+2^{100}\)

\(\Rightarrow2^3B=2^4+2^7+......+2^{100}+2^{103}\)

\(\Rightarrow8.B-B=\left(2^4+2^7+......+2^{100}+2^{103}\right)-\left(2+2^4+2^7+......+2^{97}+2^{100}\right)\)

\(\Rightarrow7B=2^{103}-2\)

\(\Rightarrow B=\dfrac{2^{103}-2}{7}\)

2 tháng 1 2018

1. Tính tổng:

B = 2 - 4 - 6 + 8 + 10 - 12 - 14 + 16 + ... + 2002 - 2004 - 2006 + 2008

=> ( 2 - 4 - 6 + 8 )+ (10 - 12 - 14 + 16) + ... + (2002 - 2004 - 2006 + 2008)

=> (-8+ 8) +(-16+ 16) +.........+ ( -2008+ 2008)(1)

=> 0+0+...........+0

=> 0

Ta thấy (1) đều là những số đối nên kết quả đường nhiên bằng 0

2 tháng 1 2018

\(A=1+4+4^2+4^3+...+4^{99}\\ \Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow3.A=4^{100}-1\\ \Rightarrow A=\dfrac{4^{100}-1}{3}< \dfrac{4^{100}}{3}=\dfrac{B}{3}\\ \Rightarrow A< \dfrac{B}{3}\)

11 tháng 2 2019

J=6 + 16 + 30 + 48 +...+ 19600 + 19998

Chia cả 2 vế cho 2 ta được

B/2 = 3 + 8 + 15 + 24 +  ......... + 98000+ 9999

B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101

B/2= 100/6[(100-1)x(2x100+1)] = 328350

-> B =328350x2=656700

K=2 + 5 + 9 + 14 + ....+ 4949 + 5049

Nhân cả 2 vế với 2 ta được

2xD=1x4+    2x5+ 3x6+   4x7+……..+98x101+99x102

2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)

2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2

2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)

2xD =           333300       +                      9900        =      343200

 -> D= 343200 :2 =171600