\(a.S=1+2+2^2+2^3+...+2^{2017}\)

\(b.S=3+3^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)

\(S=2^{2018}-1\)

\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)

\(3S=3^2+3^3+3^4+...+3^{2018}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2018}-3\)

\(S=\frac{3^{2018}-3}{2}\)

\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)

\(4S=4^2+4^3+4^4+...+4^{2018}\)

\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)

\(3S=4^{2018}-4\)

\(S=\frac{4^{2018}-4}{3}\)

\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)

\(5S=5^2+5^3+5^4+...+5^{2018}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)

\(4S=5^{2018}-5\)

\(S=\frac{5^{2018}-5}{2}\)

Chúc em học tốt ~ 

16 tháng 6 2018

Tks anh ạ 

20 tháng 10 2016

\(S=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{2017}.\left(1+2+3+...+2017\right)\)

\(S=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+\frac{1}{4}.\frac{\left(1+4\right).4}{2}+...+\frac{1}{2017}.\frac{\left(1+2017\right).2017}{2}\)

\(S=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2018}{2}\)

\(S=\frac{1}{2}.\left(2+3+4+...+2018\right)\)

\(S=\frac{1}{2}.\frac{\left(2+2018\right).2017}{2}\)

\(S=\frac{2020.2017}{4}=505.2017=1018585\)

4 tháng 2 2018

a, \(5S=5^2+5^3+...+5^{2017}\)

\(5S-S=5^{2017}-5\)

\(S=\frac{5^{2017}-5}{4}\)

b,\(3S=3^2+3^3+...+3^{101}\)

\(3S-S=3^{101}-3\)

\(S=\frac{3^{101}-3}{2}\)

c, \(3S=3-3^2+3^3-...-3^{2016}\)

\(3S+S=1-3^{2016}\)

\(4S=1-3^{2016}\)

\(S=\frac{1-3^{2016}}{4}\)

4 tháng 2 2018

b, 3S = 3^2+3^3+.....+3^101

2S=3S-S=(3^3+3^3+.....+3^101)-(3+3^2+....+3^100) = 3^101-3

=> S = (3^101-3)/2

Tk mk nha

13 tháng 4 2019

@@ dùng máy tính mà tính 

Anh làm mẫu 1 phần 

\(\frac{\frac{2}{2017}+\frac{2}{2018}}{\frac{5}{2017}+\frac{5}{2018}}=\frac{2.\left(\frac{1}{2017}+\frac{1}{2018}\right)}{5.\left(\frac{1}{2017}+\frac{1}{2018}\right)}=\frac{2}{5}\)

13 tháng 4 2019

Thanks!

17 tháng 8 2017

a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)

\(\Leftrightarrow3\left(x-2\right)=5x\)

\(\Leftrightarrow3x-6=5x\)

\(\Leftrightarrow5x-3x=6\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)

\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)

\(\Leftrightarrow4x+92=2x+80\)

\(\Leftrightarrow4x-2x=80-92\)

\(\Leftrightarrow2x=-12\)

\(\Leftrightarrow x=-6\)

c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)

d, \(B=1+2+2^2+........+2^{2017}\)

\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)

\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)

\(\Leftrightarrow B=2^{2018}-1\)

17 tháng 8 2017

\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)

\(< =>3x-6=5x=>x=-3\)

\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)

\(4x+92=3x+120=>x=28\)