Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath
b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
<=> n thuộc {0;4}
Có \(x^2+y^2\ge2xy\Rightarrow\frac{y}{x}+\frac{x}{y}\ge2\)(chia hai vế cho xy, xy>0)
\(S_1+S_2+S_3=x\left(\frac{a}{b}+\frac{b}{a}\right)+y\left(\frac{b}{c}+\frac{c}{b}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\ge2x+2y+2z=2\left(x+y+z\right)=10\)
\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
\(A=\left(-1\right)^{2n+n+n+1}\)
\(A=\left(-1\right)^{4n+1}\)
\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
\(B=0\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(C=0\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
\(D=1999^0\)
\(D=1\)
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)
\(5x+1=\pm\dfrac{6}{9}\)
+) \(5x+1=\dfrac{6}{9}\)
\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{9}\)
\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)
+) \(5x+1=\dfrac{-6}{9}\)
\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{3}\)
\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)
vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)
1/ \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\)
\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{10}\)
\(\Rightarrow\frac{2017}{a+b}+\frac{2017}{b+c}+\frac{2017}{c+a}=201,7\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=201,7\) (vì a + b + c = 2017)
\(\Rightarrow\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)=201,7\)
\(\Rightarrow M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3=201,7\)
\(\Rightarrow M=198,7\)
2/
a, 3n+2 - 2n+2 + 3n + 2n
= 3n.32 + 3n - 2n.22 + 2n
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1 ) ⋮ 10