Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=2+2^2+....+2^51
A=2A-A=(2+2^2+...+2^51)-(1+2+2^2+...+2^50)=2^51-1
5B=5^2+5^3+.....+5^101
4B=5B-B=(5^2+5^3+....+5^101)-(5+5^2+...+5^100)=5^101-5
=> B=(5^101-5)/4
Tk mk nha
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
\(A=2+2^3+2^5+2^7+2^9+...+2^{2009}\)
\(\Leftrightarrow\)\(4A=2^3+2^5+2^7+2^9+2^{11}+...+2^{2011}\)
\(\Leftrightarrow\)\(4A-A=\left(2^3+2^5+2^7+...+2^{2011}\right)-\left(2+2^3+2^5+...+2^{2009}\right)\)
\(\Leftrightarrow\)\(3A=2^{2011}-2\)
\(\Leftrightarrow\)\(A=\frac{2^{2011}-2}{3}\)
Ta có :
\(A=2+2^3+2^5+...+2^{2009}\)
\(4A=2^3+2^5+2^7+...+2^{2011}\)
\(4A-A=\left(2^3+2^5+2^7+...+2^{2011}\right)-\left(2+2^3+2^5+...+2^{2009}\right)\)
\(3A=2^{2011}-2\)
\(A=\frac{2^{2011}-2}{3}\)
Vậy \(A=\frac{2^{2011}-2}{3}\)
Câu b) dễ hơn nữa làm tương tư câu a) nhưng B nhân cho 2
Câu c) thì C nhân cho 5
Câu d) thì D nhân cho 169
\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\right)-\left(1+5+5^2+5^3+....+5^{2008}+5^{2009}\right)\)
\(\Rightarrow4A=5^{2010}-1\)
\(\Rightarrow A=\frac{5^{2010}-1}{4}\)
A=1+5+52+...+52009
=>5A=5+52+53+...+52010
=>4A=52010-1
=>A=52010-1/4