Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}+\frac{1}{3}\right)=\frac{4}{5}.\frac{3}{3}=\frac{4}{5}.1=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{3}{4}:\frac{2}{3}=\frac{9}{8}\)
\(\frac{2}{3}.\frac{4}{5}-\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{4}{5}.\frac{1}{3}=\frac{4}{15}\)
\(\frac{1}{2}:\frac{3}{4}-\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{3}{4}:\frac{1}{3}=\frac{9}{4}\)
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\left(\frac{2}{3}+\frac{1}{3}\right).\frac{4}{5}=1.\frac{4}{5}=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}=\left(\frac{1}{2}+\frac{1}{6}\right).\frac{4}{3}=\frac{2}{3}.\frac{4}{3}=\frac{8}{9}\)
c,d tương tự
a ) \(5\frac{3}{4}:3+2\frac{1}{4}.\frac{1}{3}-\frac{3}{8}=\frac{23}{4}:\frac{3}{1}+\frac{9}{4}.\frac{1}{3}=\frac{23}{12}+\frac{3}{4}=\frac{8}{3}\)
b ) \(\frac{3}{5}:\frac{5}{6}:\frac{6}{7}:\frac{7}{8}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{3.6.7.8}{5.5.6.7}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{24}{25}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{4049}{1400}\)
1/3xD=1/(2x4)+1/(4x6)+...+1/(98x100)
2/3xD=2/(2x4)+2/(4x6)+...+1/(98x100)
2/3xD= 1/2-1/4+1/4-1/6+...+1/98-1/100
2/3xD=1/2-1/100
2/3xD=49/100
D=147/200
b) \(\frac{1}{5}:\frac{1}{3}\cdot\frac{\frac{1}{3}}{\frac{1}{5}}+1996\)
\(=\frac{3}{5}\cdot\left(\frac{1}{3}:\frac{1}{5}\right)+1996\)
\(=\frac{3}{5}\cdot\frac{5}{3}+1996\)
\(=1+1996=1997\)
a) \(\frac{2}{3}:\frac{5}{7}\cdot\frac{5}{7}\cdot\frac{2}{3}+1934\)
\(=\frac{2\cdot7}{5\cdot3}\cdot\frac{5\cdot2}{7\cdot3}+1934\)
\(=\frac{2\cdot7\cdot5\cdot2}{5\cdot3\cdot7\cdot3}+1996=\frac{4}{9}+1996\)
\(4\frac{2}{5}+5\frac{6}{9}+2\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=4+\frac{2}{5}+5+\frac{6}{9}+2+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=4+\frac{2}{5}+5+\frac{2}{3}+2+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)
\(=\left(\frac{2}{5}+\frac{3}{5}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\left(4+5+2\right)\)
\(=1+1+1+11\)
\(=14\)
=22/5+51/9+11/4+3/5+1/3+1/4
=(22/5+3/5)+(11/4+1/4)+(51/9+1/3)
=5+3+6
=14
\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)
\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)
\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=10x\left(1-\frac{1}{101}\right)\)
\(=10x\frac{100}{101}\)
\(=\frac{1000}{101}\)