\(^{3^2}\)+.....+\(3^{100}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(A=1+3+3^2+.....+3^{100}\)

\(3A=3+3^2+3^3+.....+3^{101}\)

\(3A-A=3+3^2+3^3+.....+3^{101}-\left(1+3+3^{^2}+....+3^{100}\right)\)

\(2A=3+3^2+3^3+....+3^{101}-1-3-3^2-.....-3^{100}\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

8 tháng 6 2020

a) A = 20 + 21 + 22 + .... + 22010

2A = 2(20 + 21 + 22 + .... + 22010)

2A = 21 + 22 + 23 + .... + 22011

A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)

A = 22011 - 20

A = 22011 - 1

b) B = 1 + 3 + 32 + .... + 3100

3B = 3(1 + 3 + 32 + .... + 3100)

3B = 3 + 32 + 33 + .... + 3101

2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)

2B = 3101 - 1

B = (3101 - 1) : 2

c) C = 4 + 42 + 43 + .... + 4n

4C = 4(4 + 42 + 43 + .... + 4n)

4C = 42 + 43 + 44 .... + 4n + 1

3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)

3C = 4n + 1 - 4

C = (4n + 1 - 4) : 3

d) D = 1 + 5 + 52 + .... + 52000

5D = 5(1 + 5 + 52 + .... + 52000)

5D = 5 + 52 + 53 + .... + 52001

4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)

4D = 52001 - 1

4D = (52001 - 1) : 4

20 tháng 6 2017

  \(A=1+2^1+2^2+......+2^{2006}\)

\(2A=2.\left(1+2^1+2^2+......+2^{2006}\right)\)

\(2A=2+2^2+2^3+........+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+....+2^{2007}\right)-\left(1+2+2^2+...+2^{2006}\right)\)

\(A=2^{2007}-1\)

\(B=1+3+3^2+.....+3^{100}\)

\(3B=3.\left(1+3+3^2+......+3^{100}\right)\)

\(3B=3+3^2+3^3+.....+3^{101}\)

\(3B-B=\left(3+3^2+3^3+....+3^{101}\right)-\left(1+3+3^2+....+3^{100}\right)\)

\(B=3^{101}-1\)

Các phần còn lại bạn làm tương tự như trên nha

28 tháng 9 2019

bài 1 mifk viết sai nha.

bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)

29 tháng 9 2019

B1:

\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)

mấy câu khác tương tự nha

\(T=3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3T=3^2+3^3+3^4+....+3^{100}\)

\(\Rightarrow3T-T=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+....+3^{99}\right)\)

\(\Rightarrow2T=3^{100}-3\)

\(\Rightarrow2T+3=3^{2n}=2.\frac{3^{100}-3}{2}+3=3^{2n}\)

\(\Rightarrow3^{100}-3+3=3^x\)

\(\Rightarrow3^{100}=3^x\)

\(\Rightarrow x=100\)

22 tháng 7 2016

a)3T=3(3+32+...+399)

3T=32+33+...+3100

3T-T=(32+33+...+3100)-(3+32+...+399)

2T=3100-3.THay vào ta được 3100-3+3=32n

=>3100=32n =>100=2n =>n=50

b)5A=5(52+53+...+52012)

5A=53+54+...+52013

5A-A=(53+54+...+52013)-(52+53+...+52012)

4A=52013-52.Thay vào ta được :52013-52+25=52013 là 1 lũy thừa của 5

-->Đpcm

c)4C=4(1+4+...+4100)

4C=4+42+...+4101

4C-C=(4+42+...+4101)-(1+4+...+4100)

3C=4101-1 suy ra \(C=\frac{4^{101}-1}{3}\).Với \(\frac{B}{3}=\frac{4^{101}}{3}>\frac{4^{101}-1}{3}=C\)

-->Đpcm

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha