\(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)

GIÚP MÌNH V...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Ta có:

\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)

\(2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\right)\)

\(A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}-1-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{99}{2^{99}}-\frac{100}{2^{100}}\)

\(A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+\left(\frac{5}{2^4}-\frac{4}{2^4}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(A=1+\frac{3}{4}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

Đặt \(B=\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow A=1+\frac{3}{4}+B-\frac{100}{2^{99}}\) (1)

Ta có:

\(B=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}...+\frac{1}{2^{99}}\)

\(\Rightarrow2B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}...+\frac{1}{2^{98}}\)

\(2B-B=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

\(B=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{98}}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(B=\frac{1}{2^2}+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{98}}-\frac{1}{2^{98}}\right)-\frac{1}{2^{99}}\)

\(B=\frac{1}{4}+0+0+...+0-\frac{1}{2^{99}}\)

\(B=\frac{1}{4}-\frac{1}{2^{99}}\)

Từ (1)

\(\Rightarrow A=1+\frac{3}{4}+\left(\frac{1}{4}-\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(A=\frac{7}{4}+\frac{1}{4}-\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(A=2-\frac{2}{2^{100}}-\frac{100}{2^{100}}\)

\(A=2-\frac{102}{2^{100}}\)

Vậy \(A=2-\frac{102}{2^{100}}\)

30 tháng 8 2018

ta có: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}=1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

                                                                               \(=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>1-\left(\frac{1}{2}-\frac{1}{101}\right)=1-\frac{1}{2}+\frac{1}{101}\)

                                                                                                                                 \(=\frac{1}{2}+\frac{1}{101}\)

mà \(\frac{1}{2}=\frac{50}{100}>\frac{1}{100}\Rightarrow\frac{1}{2}+\frac{1}{101}>\frac{1}{100}\)

=> đ p c m

12 tháng 6 2018

1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)

   b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)

\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)

\(=5+1+0,5=6,5\)

2) a) 1/2 + 2/3x = 1/4

=> 2/3x            = 1/4 - 1/2

=> 2/3x            = -1/4

=> x                = -1/4 : 2/3

=> x                = -3/8

b) 3/5 + 2/5 : x = 3 1/2

=> 3/5 + 2/5 : x = 7/2

=>         2/5 : x  = 7/2 - 3/5

=>         2/5 : x  = 29/10

=>               x    = 2/5 : 29/10

=>               x    = 4/29

c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007

=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1

=>   x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007

=>  x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0

=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0

Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0

Nên x + 2008 = 0 <=> x = -2008

Vậy x = -2008

12 tháng 6 2018

1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)

  b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)

    <=>\(\frac{2}{3}.x=-\frac{1}{2}\)

   <=>\(x=-\frac{3}{4}\)

b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)

 <=>\(\frac{2}{5x}=\frac{29}{10}\)

 <=>\(x=\frac{29}{4}\)

c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)

<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)

<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)

<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0

<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)

<=>x=-2008

 Vậy x=-2008

Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!

11 tháng 5 2016

\(2A=2+\frac{3}{2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)

\(3E-E=2E=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=>E=... tự tính

11 tháng 5 2016

nobita kun ơi............em vừa phải thôi nhé. Đã không giúp con spam nữa. điều nay ai chả biết

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

15 tháng 4 2017

\(\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

\(\frac{1}{2}A=\left(1-\frac{1}{2^{101}}\right)\div\frac{1}{2}-\frac{100}{2^{101}}\)

\(=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)

\(\Rightarrow A=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{100}}\)