Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
b)
Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)
\(3^2D=3^3+3^5+...+3^{101}\)
\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)
\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)
Tương tự \(E=\frac{3^{102}-3^2}{8}\)
Ta có \(D-E=B\)
Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)
Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)
c,\(C=1+5^2+5^4+5^6+...+5^{200}\)
\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)
\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)
\(=5^{202}-1\)
\(\Rightarrow C=\frac{5^{202}-1}{24}\)
A = 1 + 2 + 22 + ... + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
=> 2A - A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )
=> A = 2101 - 1
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
34.x+4 = 81x+3 <=> 34.x+4 = 33.x+9 <=> 4.x+4 = 3.x+9 <=> 4.x - 3.x = 9-4 <=> x=5
Mk chỉ làm bài tính tổng thôi nhé!!!
A= 1+2+2^2+2^3+...+2^50
A.2= 2+2^2+2^3+...+2^50+2^51
A.2-A= (2+2^2+2^3+...+2^50+2^51)-(1+2+2^2+2^3+2^4+...+2^50)
A= 2^51-1
Vậy A= 2^51-1
B= 5+5^2+5^3+5^4+5^5+...+5^200
B.5= 5^2+5^3+5^4+...+5^200+5^201
B.5-B=5^201-5
B.4= 5^201-5
B= (5^201-5):4
Vậy B= (5^201-5):4
a) A = 2 + 23+25+...+249
=> 22.A = 23+25+27+...+251
22.A - A = 251-2
3A=251-2
\(A=\frac{2^{51}-2}{3}\)
b) B = 31-35+39-313+...-381
=> 34.B = 35 - 39+ 313 - 317+...-385
=> 34.B - B = -385-31
81B - B = -385-31
\(B=\frac{-3^{85}-3^1}{80}\)
c) C = -4-42-43-44-...-4100
=> 4C = -42-43-44-45-...-4101
=> 4C - C = -4101+4
3C = -4101+4
\(C=\frac{-4^{101}+4}{3}\)
A= 1+3+3^2+3^3+.......3^100
3A=3+3^2+3^3+.....+3^101
3A-A=3^101-1
2A=3^101-1
A=(3^101-1)/2