
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có :
2A = 1+1/2+1/2^2+.....+1/2^2015
A = 2A - A = (1+1/2+1/2^2+......+1/2^2015) - (1/2+1/2^2+.....+1/2^2016)
= 1 - 1/2^2016
Tk mk nha
Xét \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
Trừ vế theo vế ta được:
\(2A-A=A=1-\frac{1}{2^{2016}}\)
Không thể tính được nữa vì số mũ quá lớn!!!

A = 2015 + 20152 + ... + 201520
2014.A = 2015.A - A = (20152 + 20153 + ... + 201521) - (2015 + 20152 + ... + 201520) = 201521 - 2015
=> A = \(\frac{2015^{21}-2015}{2014}\)
B = 3 + 32 + ... + 399
2.B = 3.B - B = (32 + 33 + ... + 3100) - (3 + 32 + ... + 399) = 3100 - 3
=> B = \(\frac{3^{100}-3}{2}\)

A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100
Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100
A= 99/100
Cảm ơn bạn Kudo Shinichi, nhưng
1=2-1 ->ok
1/2=1-1/2 ->ok
1/3=1/2-1/3 -> sai
vì 1/2-1/3=1/6

a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)
Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015
\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)
<=>S=-1007+2015
<=> S=1008

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{2^{2016}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+.........+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2016}}\right)\)
\(A=1-\frac{1}{2^{2016}}\)

A=1/2+1/2^2+1/2^3+...+1/2^2016 (1)
2A=1+1/2+1/2^2+...+1/2^2015 (2)
Lấy (2)-(1) được:
A=1+1/2+1/2^2+...+1/2^2015-(1/2+1/2^2+1/2^3+...+1/2^2016)
A=1+1/2+1/2^2+...+1/2^2015-1/2-1/2^2-1/2^3-...-1/2^2016
A=1-1/2^2016
Vậy A=1-1/2^2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B
Đặt \(A=1+2+2^3+...+2^{2015}\)
\(\Rightarrow2^2A=2^2+2^3+2^5+...+2^{2017}\)
\(\Rightarrow2^2A-A=3A=\left(2^{2017}+2^2\right)-\left(1+2\right)=2^{2017}+4-3=2^{2017}+1\)
Do đó \(A=\frac{2^{2017}+1}{3}\)