K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

đặt S= \(\left(-3\right)^0+\left(-3\right)^1+..+\left(-3\right)^{2004}=1-3^1+3^2-3^3+...-3^{2003}+3^{2004}\)

=> -3S= \(-3^1+3^2-3^3+...+3^{2004}-3^{2005}\)

=> S-(-3S)=\(\left(1-3^1+3^2-3^3+....-3^{2003}+3^{2004}\right)-\left(-3^1+3^2-3^3+...+3^{2004}-3^{2005}\right)\)

=> 4S= \(1+3^{2005}\)

S= \(\frac{1+3^{2005}}{4}\)

26 tháng 6 2016

undefined

\(-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2005}\)

\(\Leftrightarrow-4A=\left(-3\right)^{2005}-1\)

hay \(A=\dfrac{-\left(-3\right)^{2005}+1}{4}\)

19 tháng 8 2017

a, \(A=5x-x^2=-x^2+5x=-x^2+2x\cdot2,5-\dfrac{25}{4}+\dfrac{25}{4}\)

\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)

Có: \(-\left(x-2,5\right)^2\le0\forall x\)

=> \(-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

''='' xảy ra khi \(x-2,5=0\Rightarrow x=2,5\)

Vậy \(A_{MAX}=\dfrac{25}{4}\Leftrightarrow x=2,5\)

b, \(B=x-x^2=x^2-x=x^2-2\cdot x\cdot\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Lập luận như câu a

c, \(C=4x-x^2+3=-x^2+2\cdot x\cdot2-4+7\)

\(=-\left(x-2\right)^2+7\)

\(-\left(x-2\right)^2\le0\forall x\)

=> \(-\left(x-2\right)^2+7\le7\)

Dấu ''='' xảy ra khi và chỉ khi x = 2

Vậy \(C_{MAX}=7\Leftrightarrow x=2\)

19 tháng 8 2017

d, \(D=-x^2+6x-11=-x^2+2\cdot x\cdot3-9-2\)

\(=-\left(x-3\right)^2-2\)

\(-\left(x-3\right)^2\le0\forall x\)

=> \(-\left(x-3\right)^2-2\le-2\)

Dấu ''='' xảy ra khi và chỉ khi x - 3 = 0 => x = 3

Vậy \(D_{MAX}=-2\Leftrightarrow x=3\)

e, \(E=5-8x-x^2=-x^2-8x+5=-x^2-2\cdot x\cdot4-16+21\)

\(=-\left(x+4\right)^2+21\)

Lập luận như trên

f, \(F=4x-x^2+1=-x^2+4x+1=-x^2+2\cdot x\cdot2-4+5\)

\(=-\left(x-2\right)^2+5\)

Tượng tự mấy ý trc

9 tháng 8 2017

c) Đặt \(t=x^2+x+1\) thì

\(t\left(t+1\right)-12=t^2+t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

d) \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(t=x^2+7x+11\) thì

\(\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Rồi nha bạn ok

9 tháng 8 2017

phân tích đa thức thành nhân tử

a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)

\(\Leftrightarrow\left(x^2+x+3\right)\left(x^2+x-5\right)\)

b) \(x^2+2xy+y^2-x-y-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+3\right)=0\)

Bài 2:

a: \(A=-3\left(x^2-\dfrac{4}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{1}{9}\right)\)

\(=-3\left(x-\dfrac{2}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)

Dấu '=' xảy ra khi x=2/3

b: \(B=-x^2+5x+3\)

\(=-\left(x^2-5x-3\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)

Dấu '=' xảy ra khi x=5/2

22 tháng 12 2016

Có: \(x+y=2\Rightarrow x=2-y\)

Thay vào A ta được:

\(A=\left(2-y\right)^2+y^2=4-4y+y^2+y^2=2\left(y^2-2y+1\right)+2=2\left(y-1\right)^2+2\)

Vì: \(2\left(y-1\right)^2\ge0,\forall y\)

=> \(2\left(y-1\right)^2+2\ge2\)

Vậy GTNN của A ;à 2 khi \(x=y=1\)

22 tháng 12 2016

cảm ơn nha

 

3 tháng 9 2016

a/ Ta có : \(4x^3+11x^2+5x+5=\left(4x^3+8x^2\right)+\left(3x^2+6x\right)-\left(5x+10\right)+15\)

\(=4x^2\left(x+2\right)+3x\left(x+2\right)-5\left(x+2\right)+15\)

\(=\left(x+2\right)\left(4x^2+3x-5\right)+15\)

Để \(4x^3+11x^2+5x+5\) chia hết (x+2) thì (x+2) thuộc Ư(15)

Bạn tự liệt kê.

b/ \(x^3-4x^2+5x-1=\left(x^3-3x^2\right)-\left(x^2-3x\right)+\left(2x-6\right)+5\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+2\left(x-3\right)+5\)

\(=\left(x-3\right)\left(x^2-x+2\right)+5\)

Để \(x^3-4x^2+5x-1\) chia hết (x-3) thì (x-3) thuộc Ư(5)

Bạn tự liệt kê

5 tháng 9 2016

thanks bạn nhìu

ok

8 tháng 8 2016

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)

\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=\left(2n-1\right)\left(2n-2\right)\left(2n\right)\)

Vì 2n và 2n - 2 là 2 số chắn liên tiếp nên có tích chia hết cho 8

=>\(\left(2n-1\right)\left(2n-2\right)\left(2n\right)\) chia hết cho 8

=>\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8 (đpcm)

8 tháng 8 2016

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=2n^3-1^3-2n-1\)

\(=\left(2n^3-2n\right)-\left(1^3-1\right)\)

\(=\left(2n^3-2n\right)-1^3+1\)

\(=\left(2n^3-2n\right)-2\)

\(=\left(2n.2n.2n-2n\right)-2\)

\(=\left(8n_{ }^3-2n\right)-2\)

\(=\left(-2.4+8\right)n\)

\(=\left(-8+8\right)n\)

\(=0n⋮8\)

Vậy ...

 

28 tháng 4 2017

\(A=2x^2-8xy+9y^2-6y+17\)

\(=\left(2x^2-8xy+8y^2\right)+\left(y^2-6y+9\right)+8\)

\(2\left(x-2y\right)^2+\left(y-3\right)^2+8\ge8\)

1 tháng 5 2017

mơn bạn ạ

4 tháng 8 2016

\(a,\left(3x+y\right)\left(9x^2-3xy+y^2\right)=27x^3+y^3\)
\(b,\left(2x-5\right)\left(4x^2+10x+25\right)=8x^3-125\)