Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Đặt\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}...+\frac{1}{110}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{10.11}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
\(S=1-\frac{1}{11}\)
\(S=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)
a) (-17) + 5 + 8 + 17
= [(-17) + 17] + (5 + 8)
= 0 + 13
= 13
b) 30 + 12 + (-20) + (-12)
= [30 + (-20)] + [(-12) + 12]
= 10 + 0
= 10
c) (-4) + (-440) + (-6) + 440
= [(-4) + (-6)] + [440 + (-440)]
= -10 + 0
= -10
d) (-5) + (-10) + 16 + (-1)
= [(-5) + (-10) + (-1)] + 16
= (-16) + 16
= 0
Các bạn có thể bỏ các dấu ngoặc vuông [] đi cũng được vì nó thực sự không quan trọng lắm. Dấu ngoặc vuông [] chỉ giúp các bạn rõ ràng hơn trong các phép tính.
a) (-17) + 5 +8 +17
= [( -17)+17] + ( 5+8)
= 0 +13
=13
b) 30 +12 + (-20) +(-12)
= (30 +-20 ) + ( -12 +12)
= 10+0
=10
c ) (-4) + (-440)+(-6)+440
(-4+-6) = (-440+440)
= -10 + 0
= -10
d) (-5) + (-10 ) +16 +(-1)
= ( 16 + -1 +-5) +(-10)
= 10 + (-10)
= 0
Bài 1:
a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) ta có: \(A=1+2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
Chúc bn học tốt !!!!!
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
1/6 + 1/12 + 1/20 + 1/30 + 1/42
= 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
= 1/2 - 1/7
= 5/14
Chúc bạn may mắn......mình chính là Đào Minh Tiến!
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=\left(1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
\(A=9+\left(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+...+\frac{1}{9\cdot10}\right)\)
\(A=9+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=9+\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=8\frac{1}{10}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}\)
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=4\left(1-\frac{1}{7}\right)\)
\(A=4.\frac{6}{7}\)
\(A=\frac{24}{7}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}=4\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=4\left(1-\frac{1}{7}\right)=\frac{6}{7}.4=\frac{24}{7}\)
Ta có :\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
= \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
= \(\frac{1}{3}-\frac{1}{9}\)
= \(\frac{2}{9}\)
Ta có:
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{29.30}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{2}-\frac{1}{30}=\frac{15}{30}-\frac{1}{30}=\frac{14}{30}=\frac{7}{15}\)
Vậy \(A=\frac{7}{15}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{870}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{29.30}\)
\(A=\frac{1}{2}-\frac{1}{30}\)
\(A=\frac{7}{15}\)
S= 2/2+ 2/6+ 2/12 + 2/20+ 2/30
S = 1 + 10/30 + 5/30 + 3/30 +2/30
S = 1 + 2/3
S = 5/3
nha bạn chúc bạn học tốt nha
\(S=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}\)
\(S=2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\)
\(S=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(S=2\left(1-\frac{1}{6}\right)=2\cdot\frac{5}{6}=\frac{5}{3}\)
30 + 12 + (–20) + (–12)
= 30 + (- 20) + [ 12 + (-12)]
= 30 – 20 + 0