
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A= 1x2+2x3+3x4+...+98x99
A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97)
= 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97)
= 98x99x100.

Bài này là:
\(S = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \hdots + \frac{2}{98 \cdot 99} + \frac{2}{99 \cdot 100}\)
Bước 1: Tách thành phân số đơn giản
Ta có công thức rút gọn:
\(\frac{2}{n \left(\right. n + 1 \left.\right)} = \frac{2}{n} - \frac{2}{n + 1}\)
Bước 2: Viết lại tổng
\(S=\left(\right.\frac{2}{1}-\frac{2}{2}\left.\right)+\left(\right.\frac{2}{2}-\frac{2}{3}\left.\right)+\left(\right.\frac{2}{3}-\frac{2}{4}+\cdots+\left(\right.\frac{2}{99}-\frac{2}{100}\left.\right)\)
Bước 3: Nhận ra dạng telescoping (các số ở giữa triệt tiêu)
Sau khi triệt tiêu:
\(S = 2 - \frac{2}{100}\)
Bước 4: Tính kết quả
\(S = 2 - 0.02 = 1.98\)
Hoặc viết gọn:
\(S = \frac{99}{50}\)
📌 Kết quả cuối:
\(\boxed{\frac{99}{50}hay1.98}\)
2/1x2+2/2x3+......+2/99x100
=2/1-2/2+2/2-2/3+.....+2/99-2/100
=2-2/100
=99/50


=5(x1/1x2 + 1/2x3 +... +1/99x100)
= 5 x( 1/1 - 1/2 +1/2 -1/3 +... +1/99 -1/100)
= 5 x( 1 /1- 1/100)
= 5 x99/100
= 99/ 20

Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300

S=1x2+2x3+3x4+4x5+...+98x99
3S= 1.2.3+ 2.3.3 + 3.4.3 + 4.5.3+...+98.99.3
3S= 1.2.3+ 2.3(4-1) + 3.4(5-2) + 4.5(6-3)+....+ 98.99.(100-97)
3S= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 +...+98.99.100 -97.98.99
3S= 98.99.100
S=970200:3
S= 323400
Bài làm:
\(S=1.2+2.3+3.4+...+98.99\)
\(S=\frac{1}{3}\left(1.2.3+2.3.3+3.4.3+...+98.99.3\right)\)
\(S=\frac{1}{3}\left[1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\right]\)
\(S=\frac{1}{3}\left(1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100\right)\)
\(S=\frac{98.99.100}{3}=323400\)
Vậy S = 323400
Học tốt!!!!

1/1.2 +1/2.3 +1/3.4 +...+1/98.99 +1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100
=1-1/100=100/100-1/100=99/100
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1/1-1/100
=100/100-1/100
=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}\)
= \(\frac{99}{100}\)
~~~
#Sunrise
A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100