Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
52D=52+54+56+...+5200
10D-D=(52+54+56+...+5201)-(1+52+54+56+...+5200)
9D=5201-1
D=(5201-1):9
**** cho mik nha bạn hiền
^_^ Chúc bạn học tốt
D=1+52+54+...+5200
=>52D=52+54+56+...+5202
=>25D-D=(52+54+56+...+5202)-(1+52+54+...+5200)
=>24D=5202-1
=>D=\(\frac{5^{202}-1}{24}\)
vậy \(D=\frac{5^{202}-1}{24}\)
a) S=1+52+54+.....+5200
=>52S=25S=52+54+56+.....+5202
=>25S-S=(52+54+56+....+5202)-(1+52+54+......+5200)
=>24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
1/ 106=(5x2)6=56x26=56x64=>106-57=56x(64-5)=56x59. Vậy ta có điều phải chứng minh
A = 20 + 21 + 22 + ...... + 2100
=> 2A= 21+...+2101
=>2A-A=A=( 21 + 22 + ...... + 2101)-(20 + 21 + 22 + ...... + 2100)
A=2101-1
cái còn lại tương tự thôi
- Ta co
2A=\(2^1+2^2+2^3+......+2^{101}\)
2A -A= \(2^1+2^2+2^3+.....+2^{101}-2^0-2^1-2^2.......-2^{100}\)
A = \(2^{101}-2^0\)
A = \(2^{101}-1\)
Cac cau con lai tuong tu cau tren.
nhân 5 lần lên:
5A=5+52+...+52010
=> 4A =5A-A= 52010-1 => A= (52010-1):4
5A = \(5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
A = \(1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow\) 4A = \(5^{2010}-1\)
\(\Rightarrow\) A = \(\frac{5^{2010}-1}{4}\)
Đúng thì cho mk biết nha