Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^1+2^2+2^3+...+2^{60}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=\left(2.1+2.2+2.2^2\right)+...+\left(2^{58}.1+2^{58}.2+2^{58}.2^2\right)\)
\(=2.\left(1+2+4\right)+...+2^{58}.\left(1+2+4\right)\)
\(=2.7+...+2^{58}.7\)
\(=\left(2+2^{58}\right).7⋮7\)hay \(A⋮7\)
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2.(1+2+2^2)+...+2^58(1+2+2^2)
A=2.7+...+2^58.7
A=7(2+2^4+....+2^58) chia hết cho 7
vậy...
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 chia hết cho 7(đpcm)
A=2^1+2^2+...+2^60
=(2^1+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^...
= ( 2^1+2^2+2^3)*(2^0+2^3+2^6+...+2^57)
= 14*(2^0+2^3+2^6+...+2^57) chia het cho 7
ko bt đúng hay sai nx!!
\(A=2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(\Rightarrow A=2^1\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(\Rightarrow A=7\cdot\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow A⋮7\)
Đặt A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+...+2^{59}.3⋮3\)
⇒A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)⋮3(đpcm)
Đặt \(A=2+2^2+2^3+2^4+....+2^{59}+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^{59}\cdot3\)
\(\Leftrightarrow A=3\cdot\left(2+2^3+....+2^{59}\right)\)
Vậy A chia hết cho 3 (đpcm)
*) Chứng mình A \(⋮\)3
Ta có : A= ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260)
= 2. ( 1 + 2 ) + 23 . ( 1 + 2) + ... + 259 . ( 1+ 2)
= 2 . 3 + 23 . 3 + .....+ 259 . 3
= 3. (2 + 23 + .... + 259 ) \(⋮\)3
Vậy A \(⋮\)3 => đpcm
Đặt \(A=1+2+2^2+2^3+...+2^{59}+2^{60}\)
\(\Leftrightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{60}+2^{61}\)
\(\Leftrightarrow\)\(2A-A=\left(2+2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{59}+2^{60}\right)\)
\(\Leftrightarrow\)\(A=2^{61}-1\)
Vậy \(A=2^{61}-1\)
Năm mới zui zẻ nhá ^^
Đặt A=\(1+2+2^2+2^3+...+2^{60}\)
2A=2(\(1+2+2^2+2^3+...+2^{60}\)
2A=\(2+2^2+2^3+2^4+...+2^{61}\)
2A-A=\(\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
A=\(2^{61}-1\)
21+22+23+..............+259+260
=(2+22+23)+..............+(258+259+260)
=2.(1+2+22)+.................+258.(1+2+22)
=2.7+............+258.7
=(2+24+.............+258).7 chia hết cho 7
21+22+23+..............+259+260
=(2+22+23)+..............+(258+259+260)
=2.(1+2+22)+.................+258.(1+2+22)
=2.7+............+258.7
=(2+24+.............+258).7 chia hết cho 7
2A=22+23+24+25+.............+260+261
2A-A=(22+23+24+25+..............+260+261)-(2+22+23+24+............+259+260)
A=261-2
Đặt A=\(1+2+2^2+2^3+...+2^{59}+2^{60}\)
=>\(2A=2\left(1+2+2^2+2^3+...+2^{59}+2^{60}\right)\)
=>\(2A=2+2^2+2^3+2^4+...+2^{60}+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{59}+2^{60}\right)\)
=>\(A=2^{61}-1\)
Gọi Biểu Thức Trên Là A :
Ta có :
A = 1+2+22+23+24+......+259+260
=> 2A = 2+22+23+24+......+259+260+261
=> 2A - A = (2+22+23+24+......+259+260+261) - (1+2+22+23+24+......+259+260)
=> A = 261 - 1