![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3
![](https://rs.olm.vn/images/avt/0.png?1311)
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Đặt \(A=\dfrac{3}{1.6}+\dfrac{3}{6.11}+...+\dfrac{3}{496.501}\)
\(5A=\dfrac{3.5}{1.6}+\dfrac{3.5}{6.11}+...+\dfrac{3.5}{496.501}\)
\(5A=3\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{496.501}\right)\)
\(5A=3\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)
\(5A=3\left(1-\dfrac{1}{501}\right)\)
\(5A=3\cdot\dfrac{500}{501}\)
\(A=\dfrac{1500}{501}:5\)
\(A=\dfrac{100}{167}\)
b, Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2018}}\)
\(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\)
\(2B-B=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)-\left(\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2018}}\right)\)
\(B=\dfrac{1}{2^2}-\dfrac{1}{2^{2018}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) ( 2x + 1 )3 = 9.81
=> ( 2x + 1 )3 = 9 . 92
=> ( 2x + 1 )3 = 93
=> 2x + 1 = 9
=> 2x = 9 - 1
=> 2x = 8
=> x = 8 : 2
=> x = 4
Vậy x = 4
a) \(\left(2x+1\right)^3=8.91\)
\(\left(2x+1\right)^3=729\)
\(\left(2x+1^3\right)=9^3\)
\(\Rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(x=4\)
Vậy \(x=4\) là giá trị cần tìm
b) \(5^x+5^{x+2}=650\)
\(5^x+5^x+5^2=650\)
\(5^x\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\) là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=1+2+2^2+.......+2^{89}\)
\(\Leftrightarrow2S=2+2^2+........+2^{90}\)
\(\Leftrightarrow2S-S=\left(2+2^2+........+2^{89}+2^{90}\right)-\left(1+2+........+2^{89}\right)\)
\(\Leftrightarrow S=2^{90}-1\)
S = 1 + 2 + 22 + 23 + ......... + 289
S = 20 + 21 + 22 + 23 + ....... + 289
21 . S = 21 . ( 20 + 21 + 22 + 23 + ...... + 289 )
2S = 21 + 22 + 23 + 24 + .......... 290
2S - S = ( 21 + 22 + 23 + 24 + ....... + 290 ) - ( 1 + 2 + 22 + 23 + ..... + 289 )
S = 290 - 1
Vậy S = 290 - 1