Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{999}\right)\left(1-\frac{1}{1000}\right)\)
\(P=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{998}{999}\cdot\frac{999}{1000}\)
\(P=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot999}{2\cdot3\cdot4\cdot5\cdot...\cdot1000}\)
\(P=\frac{1}{1000}\)
\(P=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{998}{999}\times\frac{999}{1000}\)
P=1/1000
_Kudo_
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}=\frac{1.2.3...999}{2.3.4...1000}=\frac{1}{1000}\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{2499}{2500}=\frac{3.8.15...2499}{4.9.16....2500}=\frac{1.3.2.4.3.5....49.51}{2.2.3.3.4.4...50.50}=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
\(\frac{1.51}{50.2}=\frac{51}{100}\)
a. \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{999}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{998}{999}\)
\(A=\frac{1\cdot2\cdot3\cdot....\cdot998}{2\cdot3\cdot4\cdot....\cdot999}=\frac{1}{999}\)
Vậy \(A=\frac{1}{999}\)
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
a) =3/2*4/3*5/4*....* 1000/999
=3*4*5*......*1000 / 2*3*4*...*999
=1000/2=500
phần b;c mk chưa làm đc
=1/1*2+1/2*3+...+1/999*1000
=1/1-1/2+1/2-1/3+...+1/999-1/1000
=1-1/1000
So sánh A và B biết;
A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{999}{1000}\)
B = \(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{998}{999}\)
\(\frac{999}{1000}+\frac{998}{1000}+......+\frac{1}{1000}\)
\(=\frac{999+998+997+........+1}{1000}\)
\(=\frac{499500}{1000}=\frac{999}{2}\)
1/1000 + ... + 997/1000 + 998/1000 + 999/1000 = ( 1 + ... + 997 + 998 + 999 ) / 1000 = 499500/1000 = 4995/10
\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).................\left(1-\frac{1}{999}\right).\left(1-\frac{1}{1000}\right)\)
\(P=\frac{-1}{2}.\frac{-2}{3}.......................\frac{-998}{999}.\frac{-999}{1000}\)
\(P=\frac{\left(-1\right).\left(-2\right)...............\left(-998\right).\left(-999\right)}{2.3........................999.1000}\)
\(P=\frac{-1}{1000}\)
thank you bạn nha