Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.........\frac{899}{900}\)
A=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}..........\frac{29.31}{30.30}\)
A=\(\frac{1.2.3.......29}{2.3.4.......30}.\frac{3.4.5........31}{2.3.4.......30}\)
A=\(\frac{1}{30}.\frac{2}{31}=\frac{1}{465}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{889}{900}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29\cdot31}{30.30}\)
\(=\frac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4....30.30}\)
\(=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4....30\right)\left(2.3.4.....30\right)}\)
\(=\frac{1.31}{30.2}=\frac{31}{60}\)
=1*3/2*2 * 2*4/3*3 * 3*5/4*4 * ... * 29*31/30*30
= (1*2*3*...*29) * (3*4*5*...*31) / (2*3*4*...*30) * (2*3*4*...*30)
= 31/30*2
= 31/60
A= \(\frac{1^2}{1.2}\). \(\frac{2^2}{2.3}\). \(\frac{3^2}{3.4}\). \(\frac{4^2}{5.6}\).
A= \(\frac{1.1}{1.2}\). \(\frac{2.2}{2.3}\). \(\frac{3.3}{3.4}\). \(\frac{4.4}{4.5}\).
A= \(\frac{1.2.3.4}{1.2.3.4}\). \(\frac{1.2.3.4}{2.3.4.5}\).
A= 1. \(\frac{1}{5}\).
A= \(\frac{1}{5}\).
Vậy A= \(\frac{1}{5}\).
B= \(\frac{3}{4}\). \(\frac{8}{9}\). \(\frac{15}{16}\)..... \(\frac{899}{900}\).
B= \(\frac{1.3}{2.2}\). \(\frac{2.4}{3.3}\). \(\frac{3.5}{4.4}\)..... \(\frac{29.31}{30.30}\).
B= \(\frac{1.2.3.....29}{2.3.4.....30}\). \(\frac{3.4.5.....31}{2.3.4.....30}\).
B= \(\frac{1}{30}\). \(\frac{31}{2}\).
B= \(\frac{31}{60}\).
Vậy B= \(\frac{31}{60}\).
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{29.31}{30.30}\)
\(=\frac{\left(1.2....29\right).\left(3.4....31\right)}{\left(2.3....30\right).\left(2.3....30\right)}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
A=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.......\frac{29.31}{30^2}\)
A=\(\frac{1.3.2.4.....29.31}{2.2.3.3.4.4.....30.30}\)
A=\(\frac{1.2.3....29}{2.3.4....30}\)x \(\frac{3.4....31}{2.3.4.....30}\)
A=\(\frac{1}{30}\times\frac{31}{2}\)=\(\frac{31}{60}\)
Hok tốt
3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{899}{900}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4......30}.\frac{3.4.5......31}{2.3.4......30}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
A. \(\frac{3}{4}\) x \(\frac{8}{9}\)x \(\frac{15}{16}\)x .... x \(\frac{899}{900}\)
= \(\frac{1.3}{2^2}\) x \(\frac{2.4}{3^3}\)x \(\frac{3.5}{4^2}\)x ... x \(\frac{29.31}{30^2}\)
= \(\left(\frac{1.2.3...29}{2.3.4...30}\right).\left(\frac{3.4.5...31}{2.3.4...30}\right)\)
= \(\frac{1}{30}.\frac{31}{2}\)= \(\frac{31}{60}\)
B.
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{8}{24}+\frac{9}{24}-\frac{14}{24}=\frac{8+9-14}{24}=\frac{3}{24}=\frac{1}{8}\)
A=1.3/22x2.4/32x....x29.31/302
A=1.3.2.4.3.5......29.31/22.32.....302
A=(1.2.3.....29).(3.4.5.... 31)/(2.3....30)(2.3.4....30)
A=1.31/30.2
A=31/60