\(\frac{x+y}{x-y}\)biết rằng \(\frac{x}{y}\)=a, x k...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Theo giả thiết \(\frac{x}{y}=a,x\ne y\).

Thế x = ay ta có : \(\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left[a+1\right]}{y\left[a-1\right]}=\frac{a+1}{a-1}\)

Vậy \(\frac{x+y}{x-y}=\frac{a+1}{a-1}\)

23 tháng 9 2019

thank you

8 tháng 12 2016

\(\frac{5x-2y}{x+3y}=chong.copy.linhtinh\Leftrightarrow20\left(\frac{x}{y}\right)-8=7\left(\frac{x}{y}\right)+21\Rightarrow13\left(\frac{x}{y}\right)=29\)

 \(\Rightarrow copy.linhtinh=bieuthuc\)không hiểu nhận được qua tin nhắn (hiểu rồi thì càng tốt)

\(\frac{x}{y}=\frac{29}{13}\)

14 tháng 5 2017

\(\frac{5-2x}{x+3y}=\frac{7}{4}\)

5 tháng 3 2017

x,y deu =12

5 tháng 3 2017

x,y=10

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

24 tháng 3 2019

Ta có: x + y + z = 0

=> x + y = -z

     x + z = -y

   y + z = -x

Khi đó, ta có: C = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

                       C = \(\left(\frac{y+x}{y}\right)\left(\frac{z+y}{z}\right)\left(\frac{x+z}{x}\right)\)

                       C = \(\frac{-z}{y}.\frac{-x}{z}\frac{-y}{x}\)

                        C=  -1

24 tháng 3 2019

Bạn so sánh giúp minh \(\frac{2016^{2017}+1}{2016^{2016}+1}\)  và \(\frac{2^{2016}+1}{2^{2015}+1}\)