Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}x^2+xy+\dfrac{y^2}{3}=2019\\z^2+\dfrac{y^2}{3}=1011\\x^2+xz+z^2=1008\end{matrix}\right.\Leftrightarrow x^2+xy+\dfrac{y^2}{3}=z^2+\dfrac{y^2}{3}+x^2+xz+z^2\)
\(\Rightarrow xy=2z^2+xz\Leftrightarrow xy+xz=2z^2+2xz\)
\(\Rightarrow x\left(y+z\right)=2z\left(x+z\right)\Leftrightarrow\dfrac{2z}{x}=\dfrac{y+z}{x+z}\left(đpcm\right)\)
Theo bài ra:
\(\dfrac{5-x}{-25-y}=\dfrac{x}{y}\\ \Rightarrow\left(5-x\right)y=\left(-25-y\right)x\\ \Rightarrow5y-xy=-25x-xy\\ 5y=-25x-xy+xy\\ 5y=-25x\\ \Rightarrow\dfrac{y}{x}=-\dfrac{25}{5}\\ \Rightarrow\dfrac{y}{x}=-5\)
Vậy: \(\dfrac{y}{x}=-5\)
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
Ta có : \(\frac{5-x}{-25-y}=\frac{x}{y}\)
\(\Leftrightarrow\left(5-x\right)y=\left(-25-y\right)x\)
\(\Rightarrow5y-xy=-25x-xy\)
\(\Rightarrow5y=-25x\)
\(\Rightarrow\frac{x}{y}=\frac{5}{-25}=-\frac{1}{5}\)
\(\frac{5-x}{-25-y}=\frac{x}{y}\)
\(\Leftrightarrow y\left(5-x\right)=x\left(-25-y\right)\)
\(\Leftrightarrow5y-xy=-25y-xy\)
\(\Leftrightarrow5x=-25y\)
\(\Rightarrow\frac{y}{x}=\frac{5}{-25}=-\frac{1}{5}\)
Hùng sai òi :
Ta có ; \(\frac{5-x}{-25-y}=\frac{x}{y}\)
\(\Rightarrow\left(5-x\right)y=\left(-25-y\right)x\)
\(\Rightarrow5y-xy=-25x-xy\)
\(\Rightarrow5y=-25x\)
Vậy \(\frac{x}{y}=\frac{5}{-25}=\frac{-1}{5}\)
\(\dfrac{5-x}{-25-y}=\dfrac{x}{y}\)
\(\Rightarrow y\left(5-x\right)=x\left(-25-y\right)\)
\(\Leftrightarrow5y-xy=-25x-xy\)
\(\Rightarrow5y=-25x\)
\(\Rightarrow\dfrac{y}{-25}=\dfrac{x}{5}\Rightarrow\dfrac{y}{x}=-\dfrac{25}{5}=-5\)
Vậy..........................
ai cho cai nay vao cau hoi hay vay ?