Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích đáy của hình chóp tứ giá đều:
\(V=\dfrac{1}{3}Sh\Rightarrow S=\dfrac{3V}{h}=\dfrac{3\cdot13,5}{4,5}=9\left(cm^2\right)\)
Độ dài cạnh đáy là:
\(\sqrt{9}=3\left(cm\right)\)
Diện tích đáy:
`(4.7 xx 4.1)/2 = 9,635 cm^2`.
Thể tích: `1/3 . 9,635 . 3,9 = 12,5255 cm^3`.
a) Diện tích xung quanh của hình chóp tam giác đều là:
\(\frac{{99.40}}{2}.3 = 5940\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(\frac{{40.34,6}}{2} = 692\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(5940 + 692 = 6632\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.692.98,3 \approx 22674,53\) (\(c{m^3}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là:
\(\frac{{91.120}}{2}.4 = 21840\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(120.120 = 14400\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(21840 + 14400 = 36240\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.14400.68,4 = 328320\) (\(c{m^3}\))
Giải:
Thể tích của hình chóp tam giác đều là:
\(V=\dfrac{1}{3}.S_đ.h=\dfrac{1}{3}.\dfrac{2\sqrt{3}.4}{2}.4=\dfrac{16\sqrt{3}}{3}\left(cm^3\right)\)
Vậy ...