Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)
\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=3-\sqrt{5}+\sqrt{5}-1=2\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}+2-\sqrt{5}=2\)
Chúc học tốt!!!!!!!!!!!!!
\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
a) \(\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
b, c) tương tự câu a.
d) \(\left(3-\sqrt{2}\right)\sqrt{11+6\sqrt{2}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
\(=9-2\)
\(=7\)
e) \(\sqrt{11-6\sqrt{2}+\sqrt{3-2\sqrt{2}}}\)
\(=\sqrt{11-6\sqrt{2}+\sqrt{\left(1-\sqrt{2}\right)^2}}\)
\(=\sqrt{11-6\sqrt{2}+\sqrt{2}-1}\)
\(=\sqrt{10-5\sqrt{2}}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2\left(3-\sqrt{5}\right)}\)ư
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=\sqrt{\left(9-5\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(9-5\right)\left(3+\sqrt{5}\right)}\)
\(=\sqrt{4\left(3-\sqrt{5}\right)}+\sqrt{4\left(3+\sqrt{5}\right)}=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}\)
\(=2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2=3-\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+3+\sqrt{5}\)
\(=6+2\sqrt{9-5}=6+2\sqrt{4}=6+2\cdot2=6+4=10\)
\(\Rightarrow\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{10}\Rightarrow2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=2\sqrt{10}\)
\(\Rightarrow\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}=2\sqrt{10}\)
bài 3 :
nhân đảo ngược căn 2 - căn 3 rồi quy đồng là ra ngay
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a^3+b^3=18\\ab=1\end{cases};a+b=x}\)
Ta có: \(x=a+b\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)\(\Rightarrow x^3=18+3x\Leftrightarrow x^3-3x=18\)(1)
Tương tự: Đặt \(c=\sqrt[3]{3+2\sqrt{2}},d=\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow\hept{\begin{cases}c^3+d^3=6\\cd=1\end{cases};c+d=y}\)
Ta có: \(y=c+d\Leftrightarrow y^3=\left(c+d\right)^3=c^3+d^3+3cd\left(c+d\right)\)\(\Rightarrow y^3=6+3y\)
\(\Leftrightarrow y^3-3y=6\)(2)
Từ (1) và (2) suy ra \(A=x^3-3x+y^3-3y+2020=18+6+2020=2048\)
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{5}+\sqrt{5}+1-1\)
\(\sqrt{2}A=2\sqrt{5}\)
\(A=\sqrt{10}\)
P/s tham khảo nha