\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{29-2\sqrt{6^2.5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{29-12\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+3^2}-\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2}\)

\(=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|2\sqrt{5}-3\right|-\left|\sqrt{5}+2\right|\)

\(=2\sqrt{5}-3-\left(\sqrt{5}+2\right)\) (vì \(2\sqrt{5}-3>0,\sqrt{5}+2>0\))

\(=2\sqrt{5}-3-\sqrt{5}-2\)

\(=\sqrt{5}-5\)

6 tháng 6 2018

Cần lắm hông

6 tháng 6 2018

a/ \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)

b,c tương tự

19 tháng 7 2019

Biểu thức A chị tính A2 rồi sẽ tính đc A

19 tháng 7 2019

Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ

Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc

14 tháng 7 2019

\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)

\(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

==================================================

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

===========================================================

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

================================================================

28 tháng 7 2016

a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}-1}\)

\(=\sqrt{4-\sqrt{5}}\)

c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2=1\)

d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3+1}\)

\(=2\sqrt{3}\)

 

 

 

 

27 tháng 6 2017

\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-2\cdot3\cdot2\sqrt{5}}}}}=\)\(\sqrt{\sqrt{5-\sqrt{3-2\sqrt{5}+3}}}=\sqrt{\sqrt{5-\sqrt{6-2\sqrt{5}}}}\)=\(\sqrt{\sqrt{5-\sqrt{5}+1}}=\sqrt{1}=1\)

NV
27 tháng 7 2020

\(=\sqrt{20-2.\sqrt{20.9}+9}-\sqrt{4+2.2\sqrt{5}+5}\)

\(=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(=2\sqrt{5}-3-\left(2+\sqrt{5}\right)\)

\(=\sqrt{5}-5\)

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ