\(y=\dfrac{-\sqrt{3}}{3}x+1\) với tia Ox

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2022

O A B x y 1 d

Đường thẳng d cắt trục Ox tại A(1;0) và cắt trục Oy tại \(B\left(0;\sqrt{3}\right)\)

Ta có: \(tan\widehat{BAO}=\dfrac{OB}{OA}=\dfrac{\sqrt{3}}{1}=\sqrt{3}\Rightarrow\widehat{BAO}=30^0\)

Góc tạo bởi đường thẳng d và trục Ox là góc \(\widehat{BAx}\)

Suy ra \(\widehat{BAx}=180^0-\widehat{BAO}=180^0-30^0=150^0\)

Đs....

 

 

23 tháng 4 2017

a) Đồ thị như hình bên.

b) tgα = = 1,

tgβ = = = ,

tgɣ = = = √3.

Suy ra α = 450, β = 300, ɣ = 600 .

23 tháng 4 2017

a) Đồ thị như hình bên.

b) tgα = = 1,

tgβ = = = ,

tgɣ = = = √3.

Suy ra α = 450, β = 300, ɣ = 600 .

NV
30 tháng 10 2019

a/ \(k=-1=tan\alpha\Rightarrow\alpha=135^0\)

b/ Phương trình d: \(y=kx+b\)

\(\Rightarrow\left\{{}\begin{matrix}0.k+b=1\\k.\left(-\sqrt{3}\right)+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1\\k=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow tan\alpha=k=\frac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)

28 tháng 8 2019

/nfvg6yguntbygynugytf6ht

7 tháng 6 2016

bạn dùng công thức này   

  •    gọi góc tạo bởi đường thẳng và trục Ox là ABC  thì \(\tan ABC=a\)khi \(a\ge0\)

Thì số đo góc cần tìm là   \(\tan ABC=0,5\Rightarrow ABC=26'33\)

7 tháng 6 2016

áp dụng công thức 

gọi ABC là góc tao bởi đường thẳng d với trục Ox thì ta có \(\tan ABC=a\)khi \(a\ge0\)

thì số đo góc cần tìm là tanABC = 0,5\(\Rightarrow\)ABC= 26'33'

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5