Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{BDC}=90^{\text{o}}\)
mà \(\widehat{ABD}+\widehat{BDC}=180^{\text{o}}\)
=> AB//CD
=> \(\widehat{BAC}=\widehat{ACM}=50^{\text{o}}\)
lại có : \(\widehat{ACM}+\widehat{MCE}=180^{\text{o}}\)
=> \(\widehat{MCE}=180^{\text{o}}-\widehat{ACM}=180^{\text{o}}-50^{\text{o}}=130^{\text{o}}\)
mà \(\widehat{CMN}+\widehat{MNE}=180^{\text{o}}\)
=> MC//NE
=> \(\widehat{MCE}+\widehat{CEN}=180^{\text{o}}\)
=> \(\widehat{CEN}=180^{\text{o}}-\widehat{MCE}=180^{\text{o}}-130^{\text{o}}=50^{\text{O}}\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Bạn chỉ cần vận dụng cái tổng 3 góc của 1 tam giác là dc mà
Còn cái x thì là gộp thành nhân 2x hoặc 3x
Sau đó lấy 180 : cho là ra
Hình 1 :
Vì tông 3 góc trong 1 tam giác luôn bằng 180o nên \(\widehat{B}+\widehat{C}+x=180^o\)
\(\Rightarrow55^o+35^o+x=180^o\)\(\Rightarrow90^o+x=180^o\Rightarrow x=180^o-90^o=90^o\)
Tương tự với hình 2 , ta tính được :
Hình 2 : \(x=110^o\)
Hình 3 :
Vì tổng 3 góc trong 1 tam giác luôn bằng 180o nên : \(\widehat{N}+x+x=180^o\)
\(\Rightarrow50^o+2x=180^o\Rightarrow2x=180^o-50^o=130^o\Rightarrow x=65^o\)
Hình 5 :
Vì AB ⊥ AC => \(\widehat{B}=90^o\)mà tổng 3 góc trong 1 tam giác luôn bằng 180o nên :
\(\widehat{A}+60^o+x=180^o\)\(\Rightarrow60^o+x=120^o\)\(\Rightarrow x=60^o\)
Hình 6 :
Vì IH ⊥ HG => \(\widehat{H}=90^o\)mà tổng 3 góc trong 1 tam giác luôn bằng 180o nên :
\(90^o+x+x=180^o\Rightarrow2x=90^o\Rightarrow x=45^o\)
Hình 7 :
Vì KJ ⊥ JL => \(\widehat{J}=90^o\)mà tổng 3 góc trong 1 tam giác luôn bằng 180o nên :
\(90^o+2x+x=180^o\)\(\Rightarrow3x=90^o\Rightarrow x=30^o\)
\(\left\{{}\begin{matrix}\widehat{CBA}< 135\Rightarrow\widehat{ABD}>45\Rightarrow\widehat{BAD}< 45\Rightarrow BD< DA\\\widehat{ACD}< 45\Rightarrow\widehat{CAD}>45\Rightarrow AD< CD\\\end{matrix}\right.\)
Làm toán hình thì phải lập luận rõ ràng, trong toán hình cái điểm lập luận là cao nhất, nếu không có thì 0 điểm, chế làm như vậy có phải đẩy người ta xuống 0 điểm không? Làm ơn bỏ ngay cái ngoặc tròn (và) của lớp 8 đi!
Giải:
Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)
Nên \(2016a+13b-1\) và \(2016^a+2016a+b\) là 2 số lẻ \((*)\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn
Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ
Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))
Trường hợp 2: Nếu \(a=0\) thì:
\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)
\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)
Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)
Và \(13b-1>b+1\)
\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)
\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)
\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)
Vậy \(\left(a,b\right)=\left(0;12\right)\)
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)