K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ∆ABC vuông cân tại A

Suy ra: ∠ACB=∠ABC=45o

Lại có: ∆BCD vuông cân tại B (BC = BD)

Suy ra: ∠BCD=∠Dtính chất tam giác cân)

Trong ∆BCD ta có ∠ABC góc ngoài tại đỉnh B

Do vậy: ∠ABC=∠BCD + ∠D (tính chất góc ngoài của tam giác)

Suy ra: ∠ABC= ∠2∠BCD

Do đó: ∠BCD = 1/2 . ∠ABC = 1/2. 45º= 22º30’

=> ∠ACD = ∠ACB + ∠BCD = 45o+22o30'=67o30'

29 tháng 12 2017

Xét tam giác ABC,ta có:

AB=AC(theo hình vẽ)

góc BAC=90°(theo hình vẽ)

=>tam giác ABC vuông cân tại A

Nên: góc ABC=góc ACB

Mà: góc ABC+góc ACB=180°-góc BAC=180°-90°=90°

=>góc ABC=góc ACB=90°/2=45°

Mặt khác, ta lại có:

góc ABC+góc DBC=180°(2 góc kề bù)

=>góc DBC=180°-góc ABC=180°-45°=135°

Ta có: BD=BC(theo hình vẽ)

=>tam giác DBC cân tại B

=>góc BDC=góc BCD=45°/2=22,5°=góc ADC( vì A,B,D thẳng hàng)

=> góc ACD=góc ACB+góc BCD=45°+22,5°=67,5°.

Vậy các góc của tam giác ACD là:

góc CAD=90°

góc ACD=67,5°

góc ADC=22,5°

  

13 tháng 5 2016

wait a minute!! vuiTui đi ăn cơm

13 tháng 5 2016

Xí giải giúp mk nhag :*

24 tháng 12 2021

Tổng các góc trong tam giác là 180 độ

Gọi số đo các góc lần lượt là x,y,z

Ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)

=> x=90; y=60; z=30

Tam giác ABC vuông tại A

D trung điểm AC; DM vuông góc BC => M trung điểm BC

=> AM trung tuyến thuộc cạnh huyền

=> Góc ABM = góc BAM = 60 độ

=> Tam giác ABM đều

22 tháng 2 2019

someone help me ,please

22 tháng 2 2019

                                                 ( Lưu ý : hình chỉ mang tính minh họa )

                                                              Chứng minh

 Ta thấy cả 2 tam giác ABD và tam giác ACD không thể cùng cân ở A ( vì AB=AD=AC, nên B,D,C nằm trên một đường tròn tâm A bán kính AB do đó B,C,D không thẳng hàng ).

  Nếu cả hai tam giác ABD và ACD cùng cân ở D thì tam giác ABC sẽ vuông ở A  ( Mâu thuẫn với giả thiết \(\widehat{A}\)= 75)

Nếu tam giác ABD cân ở B thì AB=BD  , tam giác ACD cân ở C thì AC=CD khi đó AB+AC=BD+DC hay AB+AC=BC ( vô lý vì trong 1 tam giác thì tổng 2 cạnh lớn hơn 1 cạnh )

Vì vậy tam giác ABD sẽ cân ở A và tam giác ACD phải cân ở D

Vì tam giác ABD cân ở A nên \(\widehat{B}=\widehat{D1}\left(tinhchat\right)\)

Vì tam giác ACD cân ở D nên \(\widehat{A1}=\widehat{C}\left(tinhchat\right)\)

Ta có \(\widehat{D1}\)là góc ngoài của tam giác ABC tại D

\(\Rightarrow\widehat{D1}=\widehat{A1}+\widehat{C}\left(tinhchat\right)\)mà \(\widehat{A1}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\widehat{D1}=2.\widehat{A1}\)mà \(\widehat{B}=\widehat{D1}\left(cmt\right)\)

\(\Rightarrow\widehat{B}=2.\widehat{A1}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A1}+\widehat{A2}+\widehat{A1}+2.\widehat{A1}\)

                 \(180^0=4.\widehat{A1}+\widehat{A2}\)(1)

Lại có : \(\widehat{A1}+\widehat{A2}=75^0\)(2)

Lấy (1) trừ (2) ta được: \(3.\widehat{A1}=105^0\)

                                           \(\widehat{A1}=35^0\)

\(\Rightarrow\widehat{C}=35^0\)( vì \(\widehat{C}=\widehat{A1}\))

Xét tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( định lý )

                                           \(\widehat{B}=70^0\)

Vậy ...

  

19 tháng 8 2023

Hình đâu em?

27 tháng 5 2017

Ta có : AB=AC

=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{ABC}=A\widehat{CB}=45^0\)

=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )

Ta lại có:

BD=BC

=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)

\(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)

=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)

Vậy trong \(\Delta ACD\) có :

\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)