Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{7}{10}\)*(\(\frac{10}{3\cdot13}\)+\(\frac{10}{13\cdot23}\)+\(\frac{10}{23\cdot33}\)+\(\frac{10}{43\cdot53}\)+\(\frac{10}{53\cdot63}\))
A=\(\frac{7}{10}\)*(\(\frac{1}{3}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{23}\)+\(\frac{1}{23}\)-\(\frac{1}{33}\)+\(\frac{1}{43}\)-\(\frac{1}{53}\)+\(\frac{1}{53}\)-\(\frac{1}{63}\))
A=\(\frac{7}{10}\)*(\(\frac{1}{3}\)-\(\frac{1}{33}\)+\(\frac{1}{43}\)-\(\frac{1}{63}\))
A=\(\frac{7}{10}\)*(\(\frac{10}{33}\)+\(\frac{20}{2709}\))
A=\(\frac{7}{10}\)*\(\frac{9250}{29799}\)
A=\(\frac{925}{4257}\)
\(\frac{-2}{5}.\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{-2}{5}.\left(\frac{2}{17}+\frac{-2}{5}\right)\)
\(=\frac{-2}{5}.\frac{5}{17}-\frac{-2}{5}.\frac{3}{5}-\frac{-2}{5}.\frac{2}{17}-\frac{-2}{5}.\frac{-2}{5}\)
\(=\frac{-2}{5}.\left(\frac{5}{17}-\frac{2}{17}\right)-\frac{-2}{5}.\left(\frac{3}{5}+\frac{-2}{5}\right)\)
\(=\frac{-2}{5}.\frac{3}{17}-\frac{-2}{5}.\frac{1}{5}\)
\(=\frac{-2}{5}.\left(\frac{3}{17}-\frac{1}{5}\right)\)
\(=\frac{-2}{5}.\frac{-2}{85}\)
\(=\frac{4}{425}\)
\(\frac{-2}{5}.\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{-2}{5}.\left(\frac{2}{17}+\frac{-2}{5}\right)\)
= \(\frac{-2}{5}.\frac{-26}{85}-\frac{-2}{5}.\frac{-24}{85}\)
= \(\frac{-2}{5}.\left(\frac{-26}{85}-\frac{-24}{85}\right)\)
= \(\frac{-2}{5}.\frac{-2}{85}\)
= \(\frac{4}{425}\)
Sửa đề : Chứng minh : S > 1
Ta thấy : \(\frac{5}{20}>\frac{5}{21}>\frac{5}{22}>\frac{5}{23}>\frac{5}{24}\)
\(\Rightarrow S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}\times5=\frac{25}{24}>1\)
Vậy S > 1 (ĐPCM)
\(\frac{7}{3.13}+\frac{7}{13.23}+\frac{7}{23.33}+\frac{7}{33.43}\)
\(=\frac{7}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+\frac{10}{33.43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+\frac{1}{33}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{1}{3}-\frac{1}{43}\right)\)
\(=\frac{7}{10}\left(\frac{43}{129}-\frac{3}{129}\right)\)
\(=\frac{7}{10}.\frac{40}{129}\)
\(=\frac{28}{129}\)
mk làm đúng rồi nha, ko tin bấm thử máy tính
7/3.13 + 7/13.23 + 7/23.33 + 7/33.43
= 7/10.(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43)
= 7/10.(1/3-1/43)
= 7/10 . 14/43
= 49/215
\(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}:\frac{1}{4}\)
\(=\frac{16}{5}.\frac{25}{8}-\frac{32}{5}\)
\(=10-\frac{32}{5}\)
\(=\frac{18}{5}\)
\(S=\frac{5}{3.13}+\frac{5}{13.23}+.....+\frac{5}{83.93}\)
\(2S=\frac{2.5}{3.13}+\frac{2.5}{13.23}+....+\frac{2.5}{83.93}\)
\(2S=\frac{10}{3.13}+\frac{10}{13.23}+.....+\frac{10}{83.93}\)
\(2S=\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{83}-\frac{1}{93}\)
\(2S=\frac{1}{3}-\frac{1}{93}=\frac{30}{93}\)
\(S=\frac{30}{93}.\frac{1}{2}=\frac{15}{93}\)
Sửa đề:
\(S=\frac{5}{3.13}+\frac{5}{13.23}+.....+\frac{5}{83.93}\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{83}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\left(\frac{31}{93}-\frac{1}{93}\right)\)
\(S=\frac{1}{2}.\frac{10}{31}\)
\(S=\frac{5}{31}\)