Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.....+\frac{4033}{\left(2016.2017\right)^2}\)
\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{2017^2-2016^2}{2016^2.2017^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{2016^2}-\frac{1}{2017^2}\)
\(=1-\frac{1}{2017^2}< 11\) (đpcm)
Bài này trong đề thi học kì 2 môn Toán lớp 6 trường Amsterdam năm 2016-2017 này. Mình 10 luôn hehe
P=3 /1.22 +1/22.32+...+4033/20162.20172
P=1/1 -1/22 +1/22 -1/52 +...+1/20162 - 1/20172
P=1-1/20172 <1
vậy p<1
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+..+\frac{1}{n^2}-\frac{1}{n+1^2}\)
\(\Rightarrow S=1-\frac{1}{n+1}\)
\(\Rightarrow S+\frac{n}{n+1}\)
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
\(S=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{61}{\left(30.31\right)^2}\)
\(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{61}{30^2.31^2}\)
\(S=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{61}{900.961}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{900}-\frac{1}{961}\)
\(S=1-\frac{1}{961}\)
\(S=\frac{960}{961}\)
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\frac{3}{2}=1\)
\(\Leftrightarrow3x=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)
Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x=99\)
a) => ( x + 1/2 ) . 3 = 1
=> 3x + 3/2 = 1
=> 3x = 1 - 3/2
=> 3x = -1/2
=> x = -1/2 : 3 = -1/6