\(S=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2017.2018}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

ta có : \(S=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2017.2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{2018}=\dfrac{504}{1009}\)

24 tháng 8 2017

Bạn có ghi thiếu đề không vậy?

5 tháng 9 2017

ko

28 tháng 2 2017

\(S=\dfrac{5}{1.2}+\dfrac{13}{2.3}+\dfrac{25}{3.4}+\dfrac{41}{4.5}+...+\dfrac{181}{9.10}\)

\(S=\dfrac{\left(1^2+2^2\right)}{1.2}+\dfrac{\left(2^2+3^2\right)}{2.3}+...+\dfrac{\left(9^2+10^2\right)}{9.10}\)

\(S=\dfrac{\left\{\left(1-2\right)^2+2.1.2\right\}}{1.2}+\dfrac{\left\{\left(2-3\right)^2+2.2.3\right\}}{2.3}+...+\dfrac{\left\{\left(9-10\right)^2+2.9.10\right\}}{9.10}\)

\(S=\dfrac{\left\{\left(-1\right)^2\right\}}{1.2+2}+\dfrac{\left\{\left(-1\right)^2\right\}}{2.3+2}+...+\dfrac{\left\{\left(-1\right)^2\right\}}{9.10+2}\)

\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}+2.9\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}+18\)

\(S=1-\dfrac{1}{10}+18\)

\(S=\dfrac{189}{10}\)

Có sai thì đừng ném đá nha tội mình ~~

3 tháng 4 2018

Đầu tiên thì nhắc lại cái hằng đẳng thức cho bạn nào chưa học này: (a-b)2=a2-2ab+b2<=>a2+b2=(a-b)2+2ab

\(S=\dfrac{\left(1^2+2^2\right)}{1.2}+\dfrac{\left(2^2+3^2\right)}{2.3}+...+\dfrac{\left(9^2+10^2\right)}{9.10}\)
\(=\dfrac{\left(\left(1-2\right)^2+2.1.2\right)}{1.2}+\dfrac{\left(\left(2-3\right)^2+2.2.3\right)}{2.3}+...+\dfrac{\left(\left(9-10\right)^2+2.9.10\right)}{9.10}\)
\(=\dfrac{\left(\left(-1\right)^2\right)}{1.2+2}+\dfrac{\left(\left(-1\right)^2\right)}{2.3+2}+...+\dfrac{\left(\left(-1^2\right)\right)}{9.10+2}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}+2.9\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}+18\)
\(=1-\dfrac{1}{10}+18\)
\(=18,9=\dfrac{189}{10}.\)

~ K chắc là đúng đâu ~

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

19 tháng 6 2018

Theo để ra ta có

\(-S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\Rightarrow-S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Rightarrow-S=1-\dfrac{1}{n}=\dfrac{n-1}{n}\)

\(\Rightarrow S=\dfrac{1-n}{n}\)

4 tháng 7 2018

Ta có:

\(S=\dfrac{-1}{1.2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-...-\dfrac{1}{\left(n-1\right)n}\\ S=-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\right)\\ S=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\\ S=-\left(1-\dfrac{1}{n}\right)\\ S=-\dfrac{n-1}{n}\)

Vậy \(S=-\dfrac{n-1}{n}\)