K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

S = 12 + 22 + ... + 102

S = 1 + 4 + ... + 100

S = 385

17 tháng 7 2016

2S=2+22+23+....+210+211

2S-S=211-1

S=211-1

13 tháng 4 2019

\(\left[1-\frac{1}{2^2}\right]\left[1-\frac{1}{3^2}\right]\left[1-\frac{1}{4^2}\right]...\left[1-\frac{1}{10^2}\right]\)

\(=\left[1-\frac{1}{4}\right]\left[1-\frac{1}{9}\right]\left[1-\frac{1}{16}\right]...\left[1-\frac{1}{100}\right]\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{99}{100}\)

Tự tính :v

8 tháng 8 2018

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)

=>  \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)

=>  \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)

=>  \(S=1-\frac{1}{2^{20}}\)

14 tháng 8 2018

muộn mất rồi nhưng dù sao cũng cảm ơn bạn

27 tháng 9 2018

\(10^2\cdot10^3\cdot10^4\cdot10^5\cdot10^6\)

\(=10^{2+3+4+5+6}\)\

\(=10^{20}\)

Trả lời:

102 . 103 . 104 . 10. 106

= 102+3+4+5+6

= 1020

Hok tốt!

27 tháng 4 2022

\(S=\dfrac{2^2}{1.2}+\dfrac{2^2}{2.3}+\dfrac{2^2}{3.4}+...+\dfrac{2^2}{2022.2023}\)

\(S=2^2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)

\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\)

\(S=2^2.\dfrac{2022}{2023}\)

\(S=\dfrac{2^2.2022}{2023}=\dfrac{8088}{2023}\)

5 tháng 11 2016

Đạt A = 2 + 2 2 + ... + 2 500

2A  = 2 2 + 2 3 + .... + 2 501

2A - A = ( 2 2 + 2 3 + .... + 2 501 )

           -  ( 2 + 2 2 + ... + 2 500 )

A         = 2 501  - 2

8 tháng 12 2016

HAY LẮM

30 tháng 9 2015

Dat A =1+2+22+23+...+250      

=> 2A=2+22+23+24+...+251

=> 2A-A= 2+22+23+24+...+250 - ( 1+2+22+23+...+250 )

=> A=251-1

 

1 tháng 11 2018

22s=2+22+...+22020

4S-S=(2+22+...+22020)-(1+2+22+....+22018)

3S=22020-1

S=(22020-1):3

1 tháng 11 2018

cảm ơn cậu 

24 tháng 7 2016

Ta thấy : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow S< 1-\frac{1}{100}\)

Mà \(1-\frac{1}{100}< 1\)nên \(S< 1\)

Ủng hộ mk nha !!! *_*