Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 101 + (-102) + 103 + (-104) + ... + 2017 + (-2018)
Khi số âm là số nguyên, ta có số số hạng là:
(2018 - 101) : 1 + 1 = 1918 (số hạng)
S = [101 + (-102)] + [103 + (-104)] + ... + [2017 + (-2018)]
S = (- 1) + (-1) + ... + (-1)
Có số số hạng là:
1918 : 2 = 959 (số hạng)
S = (-1) \(\times\) 959
S = - 959
P=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0+0+...+0
=0
C = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)
\(C=\frac{5151}{51}\)
\(C=101\)
b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)
\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)
\(D=\frac{0}{2+4+6+...+100}\)
\(D=0\)
C=\(\frac{101+100+...+3+2+1}{101-100+...+3-2+1}\)
=\(\frac{\left(101+1\right).101:2}{\left(101-100\right)+...+\left(3-2\right)+1}\) (nhóm 2 số hạng ở MS thì sẽ có 51 nhóm và dư 1 số hang )
=\(\frac{102.101:2}{1+...+1+1}\) ( Ms có 51 số 1)
=\(\frac{51.101}{51}\)=101
D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)
= \(\frac{37.101.43-43.101.37}{2+4+6+..+100}\)
= \(\frac{0}{2+4+6+...+100}\)
=0
Tick mik nha, thks bạn
b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)
suy ra B = 0
c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)
\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)
\(S=-1+\left(-1\right)+...+\left(-1\right)\) (có (100 - 2) : 2 + 1 = 50 số hạng)
\(S=-1.50=-50\)
\(S=\left(-1\right)+\left(-1\right)+.........+\left(-1\right)=\left(-1\right).50=-50\)