Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1+5-1+5-2+5-3+...+5-2020=A
Ta có 5A=5(1+5-1+5-2+5-3+...+5-2020)
=51+50+5-1+5-2+5-3+...+5-2019
⇒5A-A=(51+50+5-1+5-2+5-3+...+5-2019)-(1+5-1+5-2+5-3+...+5-2020)
\(\Rightarrow\)4A=51-5-2020
\(\Rightarrow\)A=\(\frac{5^1-5^{-2020}}{4}\)
\(\frac{5^1-5^{-2020}}{4}\)\(\frac{5^1-5^{-2020}}{4}\)Vậy A=\(\frac{5^1-5^{-2020}}{4}\)\(\frac{5^1-5^{-2020}}{4}\)
\(A=1+5^{-1}+5^{-2}+5^{-2}+...+5^{-100}\)
\(\Rightarrow5A=5+1+5^{-1}+5^{-2}+...+5^{-99}\)
\(\Rightarrow5A-A=5+1+5^{-1}+5^{-2}+...+5^{-99}-1-5^{-1}-5^{-2}-5^{-3}-...-5^{-100}\)
\(\Leftrightarrow4A=5-5^{-100}\)
\(\Rightarrow A=\frac{5-5^{-100}}{4}\)
Chúc bạn học tốt@@
S = 1 + 3 + 32 + ... + 3100
3S = 3 + 32 + ... + 3101
3S - S = 3101 - 1
2S = 3101 - 1
S = \(\frac{3^{101}-1}{2}\)
B = 1 + 5 + 52 + ... + 549
5B = 5 + 52 + ... + 550
5B - B = 550 - 1
4B = 550 - 1
B = \(\frac{5^{50}-1}{4}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(B=1+5+5^2+...+5^{2018}\)
\(5B=5+5^2+5^3+...+5^{2019}\)
\(5B-B=\left(5+5^2+5^3+...+5^{2019}\right)-\left(1+5+5^2+...+5^{2018}\right)\)
\(4B=5^{2019}-1\)
\(B=\frac{5^{2019}-1}{4}\)
Q = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{500}}\)
=> 5Q = \(5+1+\frac{1}{5}+...+\frac{1}{5^{499}}\)
=> 5Q - Q = \(5-\frac{1}{5^{500}}\)
=> Q = \(\frac{5-\frac{1}{5^{500}}}{4}\)
\(5S=5+1+\frac{1}{5^2}+...+\)\(\frac{1}{5^{2019}}\)
\(5S-S=4S=5-\frac{1}{5^{2019}}\)
\(\Rightarrow S=\frac{\frac{5^{2020}}{5^{2019}}}{4}\)
\(S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\)
\(5S=5\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\right)\)
\(5S=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(5S-S=4S\)
\(=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\right)\)
\(=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-1-\frac{1}{5}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2020}}\)
\(=5-\frac{1}{5^{2020}}\)
\(4S=5-\frac{1}{5^{2020}}\Rightarrow S=\frac{5-\frac{1}{5^{2020}}}{4}\)