Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
Ta có: A=\(\frac{30^{10}-1}{30^{10}+2}=\frac{30^{10}+2-3}{30^{10}+2}=\frac{30^{10}+2}{30^{10}+2}-\frac{3}{30^{10}+2}=1-\frac{3}{30^{10}+2}\)
B = \(\frac{30^{10}-7}{30^{10}-4}=\frac{30^{10}-4-3}{30^{10}-4}=\frac{30^{10}-4}{30^{10}-4}-\frac{3}{30^{10}-4}=1-\frac{3}{30^{10}-4}\)
Vì 3010+2>3010-4 nên 3/3010+2<3/3010-4
Do đó: 1-3/3010+2 > 1-3/3010-4
Vậy A>B
*Mình nói rõ hơn chỗ Vì...nên nha: trong phân số cùng tử, mẫu nào lớn hơn thì phân số đó bé hơn. Trong phép trừ có số bị trừ giống nhau thì số trừ bé hơn sẽ cho kết quả lớn hơn. Nên là A>B á. Học tốt nhee uwu
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{13}{38}>\frac{29}{88}\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có: \(3^{301}>3^{300}=\left(3^3\right)^{100}=27^{100}\left(1\right)\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\left(2\right)\)
Do \(25^{100}< 27^{100}\Rightarrow5^{200}< 3^{300}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow5^{199}< 5^{200}< 3^{300}< 3^{301}\Rightarrow5^{199}< 3^{301}\)
c, Ta có: \(\frac{10^{2018}+5}{10^{2018}-8}=\frac{10^{2018}-8+13}{10^{2018}-8}=1+\frac{13}{10^{2018}-8}\)
\(\frac{10^{2019}+5}{10^{2019}-8}=\frac{10^{2019}-8+13}{10^{2019}-8}=1+\frac{13}{10^{2019}-8}\)
Do \(\frac{13}{10^{2018}-8}>\frac{13}{10^{2019}-8}\Rightarrow1+\frac{13}{10^{2018}-8}>1+\frac{13}{10^{2019}-8}\Rightarrow\frac{10^{2018}+5}{10^{2018}-8}>\frac{10^{2019}+5}{10^{2019}-8}\)
Cách khác
\(E=\frac{10^{30}+2}{10^{31}+2}\Rightarrow10E=\frac{10^{31}+20}{10^{31}+2}=\frac{10^{31}+2+18}{10^{31}+2}=1+\frac{18}{10^{31}+2}\)
\(F=\frac{10^{31}+2}{10^{32}+2}\Rightarrow10F=\frac{10^{32}+20}{10^{32}+2}=\frac{10^{32}+2+18}{10^{32}+2}=1+\frac{18}{10^{32}+2}\)
Vì \(\frac{18}{10^{31}+2}>\frac{18}{10^{32}+2}\Rightarrow1+\frac{18}{10^{31}+2}>1+\frac{18}{10^{32}+2}\Rightarrow E>F\)
b/\(\frac{10^9+1}{10^{9+1}+1}\)=\(\frac{10^9+1}{10.10^9+1}\)=\(\frac{1}{10\text{}}\)
\(\frac{10^{10}+1}{10^{10+1}+1}\)=\(\frac{10^{10}+1}{10+10^{10}+1}\)=\(\frac{1}{10}\)
Vì \(\frac{1}{10}\)=\(\frac{1}{10}\)=>bằng nhau
\(\frac{-207}{809}\)> 1
\(\frac{175}{-526}\)< 1
=> \(\frac{-207}{809}\)> \(\frac{175}{-526}\)
Mik bt làm câu a thôi nha!
Câu b hoei khó
Bài giải
Ta có :
\(\frac{13}{14}=1-\frac{1}{14}\)
\(\frac{12}{13}=1-\frac{1}{13}\)
Vì \(\frac{1}{14}< \frac{1}{13}\) \(\Rightarrow\text{ }\frac{13}{14}>\frac{12}{13}\)
b, Bài giải
\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)
\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)
Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)
\(\Rightarrow\text{ }A>B\)
a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)
Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=> 10A > 10B
=> A > B
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\)
=> A < B