![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+\sqrt{x^2-4x}}{x-\sqrt{x^2-4x}}-\frac{x-\sqrt{x^2-4x}}{x+\sqrt{x^2-4x}}\)
\(\Leftrightarrow\frac{\left(x+\sqrt{x^2-4x}\right)^2}{\left(x-\sqrt{x^2-4x}\right)\left(x+\sqrt{x^2-4x}\right)}-\frac{\left(x-\sqrt{x^2+4x}\right)^2}{\left(x-\sqrt{x^2-4x}\right)\left(x+\sqrt{x^2-4x}\right)}\)
\(\Leftrightarrow\frac{\left(x+\sqrt{x^2-4x}\right)^2-\left(x-\sqrt{x^2-4x}\right)^2}{\left(x-\sqrt{x^2-4x}\right)\left(x+\sqrt{x^2-4x}\right)}\)
\(\Leftrightarrow\frac{\left(x+\sqrt{x^2-4x}\right)^2-\left(x-\sqrt{x^2-4x}\right)^2}{4x}\)
\(\Leftrightarrow\frac{4x\sqrt{x^2-4x}}{4x}\)
\(\Leftrightarrow\frac{x\left(\sqrt{x^2-4x}\right)}{x}\)
\(\Rightarrow\sqrt{x^2-4x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
d/
Bình phương 2 vế pt đã cho:
\(x^2-\frac{1}{4x}=x^2+x-\frac{1}{4x}-2x\sqrt{x-\frac{1}{4x}}\)
\(\Leftrightarrow x=2x\sqrt{x-\frac{1}{4x}}\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\2\sqrt{x-\frac{1}{4x}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x-\frac{1}{4x}\right)=1\)
\(\Leftrightarrow4x^2-x-1=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{17}}{8}\\x=\frac{1-\sqrt{17}}{8}\end{matrix}\right.\)
Do quá trình biến đổi là không tương đương và ban đầu chưa tìm điều kiện xác định nên cần thế 2 nghiệm vào pt ban đầu để thử.
Ta thấy chỉ có nghiệm \(x=\frac{1+\sqrt{17}}{8}\) thỏa mãn
Vậy pt có nghiệm duy nhất \(x=\frac{1+\sqrt{17}}{8}\)
c/ Chắc đề là \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
ĐKXĐ: \(0\le x\le1\)
\(\Leftrightarrow2\sqrt{x+x^2}+2\sqrt{x-x^2}=2x+2\)
\(\Leftrightarrow\left(x+x^2-2\sqrt{x+x^2}+1\right)+\left(x-x^2-2\sqrt{x+x^2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+x^2}-1\right)^2+\left(\sqrt{x-x^2}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+x^2}-1=0\\\sqrt{x-x^2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-1=0\\x^2-x+1=0\end{matrix}\right.\)
Phương trình đã cho vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-----------\)
Đặt \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và \(t=\sqrt{x}\) \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi \(x>0\)
Khi đó, ta biểu diễn lại \(\alpha\) dưới dạng biến số \(t\) như sau:
\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)
nên \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\) với mọi \(t>0\) \(\Rightarrow\) \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\) (do \(\Delta_t>0\) )
Dấu \("="\) xảy ra khi và chỉ khi \(2t^2-3t-3=0\)
Ta thành lập biệt thức \(D=b^2-4ca\) với tập xác định của pt là \(t\in\left(0;\infty\right)\) như sau:
\(\Delta_t=3^2+4.2.3=33\)
Do đó, ta tính được \(t_1=\frac{3-\sqrt{33}}{4};\) \(t_2=\frac{3+\sqrt{33}}{4}\)
Nhưng ta chỉ chấp nhận
\(t=\frac{3+\sqrt{33}}{4}\) (do điều kiện \(\left(i\right)\) ) làm nghiệm duy nhất của pt.
\(\Rightarrow\) \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
\(-----------\)
Mặt khác, ta lại áp dụng bđt \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:
\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\) \(\alpha=3\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Vậy, \(A_{min}=\frac{10}{3}\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Điều kiện x>0
Đặt a = 4x2 + 9x + 18 √x +9
b = 4x√x + 4x
Từ đó ta có A = a/b + b/a >= 2
Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a
Phần còn lại bạn tự làm nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
S = (3;6)
b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)
c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)
d) đkxđ : x khác -1
\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)
e) đk x >= 3/2
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm
f) đk x >= -3/4
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm